

#### https://africanjournalofbiomedicalresearch.com/index.php/AJBR Afr. J. Biomed. Res. Vol. 27(4S) (November 2024); 15714-15736 Research Article

# In Vitro Analytical Method Development And Validation Of Sacubitril And Valsartan In Rabbit Plasma Using RP-UPLC

### VS Mani kumar Pinaka\*1, Chennu M M Prasada Rao<sup>2</sup>

<sup>1\*</sup>Research Scholar, School of Pharmacy, Raffles university, Neemrana- 301705. 2 Professor, School of Pharmacy, Raffles University, Neemrana- 301705. <a href="mailto:chennuprasad12@gmail.com">chennuprasad12@gmail.com</a>

\*Corresponding Author; VS mani Kumar Pinaka

\*E-mail: Vsmac27@gmail.com,

#### **Abstract**

A simple, Accurate, precise method was developed for the simultaneous estimation of Sacubitril and Valsartan in Rabbit plasma was developed and validated. By using solvent phase extraction [SPE] the sample preparation was prepared. Chromatogram was run through Std CHS (50mm x 2.1 mm, 1.8m). Mobile phase containing Buffer AmmoniumAceatate: Acetonitrile taken in the ratio 70:20 was pumped through column at a flow rate of 0.3ml/min. Buffer used is Disodium Phosphate buffer in this method was buffer. For the separation of Sacubitril and Valsartan Internal Standard [IS] used is Emtricitabine. The Temperature was maintained at 30°C. Optimized wavelength selected was 260nm. Retention time of Sacubitril and Valsartan was found to be 1.196min (IS) and 1.528min of Sacubitril and 1.799min of Valsartan. The standard curve was linear (R2 >0.995) over the concentration range of 0.4-8  $\mu$ g/ml of Valsartan & 0.2-4  $\mu$ g/ml of Sacubitril. All the analytical validation parameters were determined as per ICH guidelines The bioanalytical method developed approach was selective, robust, and reliable, as accuracy, precision, recovery, and other validation parameters were all within the recommendations' limitations. The peaks produced for the drug of interest and the internal standard were well separated from one another without any plasma interferences, and the peaks were symmetrical with an adequate tailing factor. The method has the potential to be very beneficial in therapeutic drug monitoring (TDM), bioequivalence research, pharmacokinetics studies, toxicology, and biomedical investigations.

Key Words: Sacubitril and Valsartan, Internal Standard, RP- UPLC, Bioanalysis, Rabbit Plasma

\*Authors for correspondence: E-mail Id: sidheswarprasadshukla@yahoo.com

DOI: <a href="https://doi.org/10.53555/AJBR.v27i4S.7858">https://doi.org/10.53555/AJBR.v27i4S.7858</a>

© 2024 The Author(s).

This article has been published under the terms of Creative Commons Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0), which permits noncommercial unrestricted use, distribution, and reproduction in any medium, provided that the following statement is provided. "This article has been published in the African Journal of Biomedical Research"

#### Introduction

Bioanalytical techniques, employed for the quantitative determination of drugs and their metabolites in biological fluids and creates a specific procedure to enable a coalesce of interest to be identified and at the same time to be quantified in a matrix. A coalesce is measured by several procedures. The choice of analytical procedures involve many considerations, such as: concentration levels, chemical properties of the

analyte, specimen matrix, cost of the analysis, experimental speed, quantitative or qualitative measurement, required precision and necessary equipment<sup>2</sup>. Bioanalytical method validation comprises all criteria determining data quality, such as selectivity, accuracy, precision, recovery, sensitivity, and stability.

### DRUG ANALYSIS IN VARIOUS BIOLOGICAL MEDIA

Blood, urine, and faeces are the most commonly acquired samples for biopharmaceutical analysis, especially if the drug or metabolite is poorly absorbed or substantially eliminated in the bile. Saliva, breath, and tissue are examples of other media that can be used. The nature of the investigation heavily influences the selection of sampling media. In a clinical pharmacokinetic investigation, for example, medication levels necessitate the use of blood, urine, and saliva. A bioavailability study may necessitate drug level data in blood and/or urine, but a drug identification or drug addiction concern may only necessitate one type of biological sample.

The nature of the drug investigation heavily influences the selection of sample media. In a clinical pharmacokinetic study, for example, medication levels necessitate the use of blood, urine, and perhaps saliva. A bioavailability research may necessitate medication level measurements in blood or urine. The steps involved in estimating medicines in biological fluid are sample collection, sample treatment, separation of the compound of interest from the matrix, and analysis.

Bioanalysis can determine the therapeutic efficacy of a specific medicine. Bioanalysis is important in the pharmaceutical industry. The following steps are involved in bioanalysis.

- ➤ Biological fluid selection and collection
- ➤ Sample preparation -Analyte extraction from biological matrix.
- ➤ Analyte detection is accomplished through a variety of approaches.

The desired analyte should be extracted from the biological fluid after it has been selected. This phase in the bioanalytical approach is more crucial since sample preparation can be done using several extraction methods. The preparation of the sample takes time and should be done carefully due to its importance. If the biological matrix is liquid, such as blood, plasma, or urine, liquid-liquid extraction is employed; if it is solid, liquid-solid extraction is utilized.

The following are the most well-known and widely utilized extraction methods

- 1. Protein precipitation method.
- 2. Liquid-liquid extraction method.(LLE)
- 3. Solid-phase extraction method.(SPE)

Sacubitril is a prodrug neprilysin inhibitor used in combination with valsartan to reduce the risk of cardiovascular events in patients with chronic heart failure (NYHA Class II-IV) and reduced ejection fraction. It was approved by the FDA after being given the status of priority review for on July 7, 2015. Sacubitril's active metabolite, LBQ657 inhibits neprilysin, a neutral endopeptidase that would typically cleave natiuretic peptides such as atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and c-type natriuretic peptide (CNP). ANP and BNP are released under atrial and ventricle stress, which activate downstream receptors leading to vasodilation, natriuresis and diuresis. Under normal conditions, neprilysin breaks down other vasodilating peptides and

also vasoconstrictors such as angiotensin I and II, endothelin-1 and peptide amyloid beta-protein. Inhibition of neprilysin therefore leads to reduced breakdown and increased concentration of endogenous natriuretic peptides in addition to increased levels of vasoconstricting hormones such as angiotensin II.

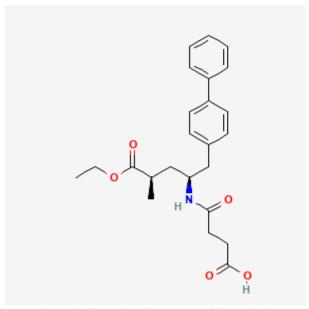



Figure 1 Chemical Structure of Sacubitril

Valsartan is a monocarboxylic acid amide consisting of L-valine in which the amino hydrogens have been replaced by a pentanoyl and a [2'-(1H-tetrazol-5-yl)biphenyl]-4-yl]methyl group. It exhibits antihypertensive activity. It has a role as an antihypertensive agent, an angiotensin receptor antagonist, a xenobiotic and an environmental contaminant. It is a biphenylyltetrazole, a monocarboxylic acid amide and a monocarboxylic acid.

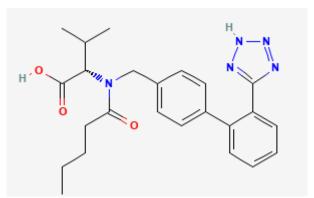



Figure 2: Chemical Structure of Valsartan

#### **Experimental Work:**

Materials and Chemical's Used: 1. API: Sacubitril and Valsartan API was obtained as a gift sample from Akirvis Pvt Limited, Kukatpally, Hyderabad, Internal Standard From Akrivis Pharma pvt Ltd. Rabbit plasma: The Plasma was supplied from Akrivis Pharma pvt Ltd., Hyderabad Chemicals used in the AR and HPLC grades are Used. All instrument used in the Work calibrated

#### Methodology:

**Preparation of solutions:** - All solutions performed sonication, were stored at room temperature, and were utilized within 24 hours after their production. The next section outlines the methodology for preparing buffers and possible solutions.

#### Preparation of diluent (v/v):

Based up on the solubility of the drugs, diluent was selected, Na<sub>2</sub>HPO<sub>4</sub> and acetonitrile taken in the ratio of 70:20.

#### Preparation of Buffer (v/v):

**0.01N Na2HPO4 Buffer:** Accurately weighed 1.41gm of Potassium dihydrogen Ortho phosphate in a 1000ml of Volumetric flask add about 900ml of milli-Q water added and degas to sonicate and finally make up the volume with water then PH adjusted to 4.8 with dil. Orthophosphoric acid solution.

#### Preparation of stock solutions: -

Standard Preparation: Accurately Weighed and transferred 20mg of Sacubitril and 40 mg of Valsartan working Standards into a 100ml clean dry volumetric flask, add 3/4th volume of diluent, sonicated for 5 minutes and make up to the final volume with diluents, and filter the solution with Hplc nylon 0.5μm size filters (200 ppm/μg/ml of Sacubitril and 400 ppm/μg/ml of Valsartan).

**Standard Working Solution:** From the above stock solution 0.1ml, 0.2ml, 0.3ml, 0.8ml, 1.0ml, 1.2ml, 1.6ml and 2.0 ml was pipette and transferred to 8 individual of 10 ml volumetric flask and make up the volume up to the mark with diluent to produce 0.4  $\mu$ g/ml, 0.8  $\mu$ g/ml,

 $1.2\mu g/ml,~3.2~\mu g/ml,~4.0~\mu g/ml,~4.8~\mu g/ml,~6.4~\mu g/ml$  and  $8.0\mu g/ml$  of Valsartan, 0.2  $\mu g/ml,~0.4~\mu g/ml,~0.6\mu g/ml,~1.6~\mu g/ml,~2.0~\mu g/ml,~2.4~\mu g/ml,~3.2~\mu g/ml$  and  $4.0\mu g/ml$  of Sacubitril.

#### Stock solution of internal standard (Emtricitabine):

\_

**Standard Preparation:** Accurately Weighed and transferred 50 mg of Emtricitabine working Standards into a 100ml clean dry volumetric flask, add 3/4th volume of diluent, sonicated for 5 minutes and make up to the final volume with diluents, and filter the solution with Hplc nylon  $0.5\mu m$  size filters (500 ppm/ $\mu g/ml$  of Emtricitabine).

**Final concentration**: From the above solution, take 1ml of solution and spiking blank plasma with working stock dilutions of analyte to produce  $50\mu g/ml$  ISD concentration.

### Preparation of calibration curve (CC) standards and quality control (QC) samples

Quality control (QC) samples were prepared by spiking blank plasma with working stock dilutions of analytes to produce 0.4  $\mu$ g/ml (Standard-1/LLOQ), 0.8  $\mu$ g/ml (Standard-2), 1.2  $\mu$ g/ml (Standard-3/LQC), 3.2  $\mu$ g/ml (Standard-4), 4.0  $\mu$ g/ml (Standard-5/MQC), 4.8 $\mu$ g/ml (Standard-6), 6.4 $\mu$ g/ml (Standard-7/HQC) and 8.0 $\mu$ g/ml (Standard-8/ULOQ) of Valsartan and 0.2  $\mu$ g/ml (Standard-1/LLOQ), 0.4  $\mu$ g/ml (Standard-2), 0.6  $\mu$ g/ml (Standard-3/LQC), 1.6  $\mu$ g/ml (Standard-4), 2.0  $\mu$ g/ml (Standard-5/MQC), 2.4 $\mu$ g/ml (Standard-6), 3.2 $\mu$ g/ml (Standard-7/HQC) and 4.0 $\mu$ g/ml (Standard-8/ULOQ) of Sacubitril.

Table 1 CC spiking solutions of Sacubitril.

| Table 1 de spining solutions of sucusions |                 |               |         |           |            |  |
|-------------------------------------------|-----------------|---------------|---------|-----------|------------|--|
| Spiking solution                          | pippetout in ML | make up in ML | spiking | make upon | final conc |  |
|                                           |                 |               | in ML   | ML        | in ng/ml   |  |
| Standard-1                                | 0.1             | 10            | 0.25    | 2.5       | 200        |  |
| Standard-2                                | 0.2             | 10            | 0.25    | 2.5       | 400        |  |
| Standard-3                                | 0.3             | 10            | 0.25    | 2.5       | 600        |  |
| Standard-4                                | 0.8             | 10            | 0.25    | 2.5       | 1600       |  |
| Standard-5                                | 1.0             | 10            | 0.25    | 2.5       | 2000       |  |
| Standard-6                                | 1.2             | 10            | 0.25    | 2.5       | 2400       |  |
| Standard-7                                | 1.6             | 10            | 0.25    | 2.5       | 3200       |  |
| Standard-8                                | 2.0             | 10            | 0.25    | 2.5       | 4000       |  |

Table 2 CC spiking solutions of Valsartan.

| Spiking solution | pippetout in ML | make up in ML | spiking<br>in ML | make upon<br>ML | final conc<br>in ng/ml |
|------------------|-----------------|---------------|------------------|-----------------|------------------------|
| Standard-1       | 0.1             | 10            | 0.25             | 2.5             | 400                    |
| Standard-2       | 0.2             | 10            | 0.25             | 2.5             | 800                    |
| Standard-3       | 0.3             | 10            | 0.25             | 2.5             | 1200                   |
| Standard-4       | 0.8             | 10            | 0.25             | 2.5             | 3200                   |
| Standard-5       | 1.0             | 10            | 0.25             | 2.5             | 4000                   |
| Standard-6       | 1.2             | 10            | 0.25             | 2.5             | 4800                   |
| Standard-7       | 1.6             | 10            | 0.25             | 2.5             | 6400                   |
| Standard-8       | 2.0             | 10            | 0.25             | 2.5             | 8000                   |

Table 3 Preparation of QC spiking solutions

| Spiking solution | pippetout<br>in ML | make up<br>in ML | spiking in ML | make<br>upon ML | final conc in ng/ml<br>of Sacubitril | Final conc in ng/ml of Valsartan. |
|------------------|--------------------|------------------|---------------|-----------------|--------------------------------------|-----------------------------------|
| LLOQ             | 0.1                | 10               | 0.25          | 2.5             | 200                                  | 400                               |
| LQC              | 0.3                | 10               | 0.25          | 2.5             | 600                                  | 1200                              |
| MQC              | 1.0                | 10               | 0.25          | 2.5             | 2000                                 | 4000                              |
| HQC              | 1.6                | 10               | 0.25          | 2.5             | 3200                                 | 6400                              |
| ULOO             | 2.0                | 10               | 0.25          | 2.5             | 4000                                 | 8000                              |

The solutions containing carbon compounds (CCs) and quality controls (QCs) were stored in a deepfreeze at a temperature of -20°C. A 0.25 mL amount of spiked samples was hermetically sealed and stored in several pre-labeled vials at a temperature of -20°C.

- 1. Common Core standards.
- 2. Quality control samples.
- 3. A blank sample including both spiking internal standard (IS) and analyte.
- 4. The standard zero sample involves adding an internal standard (IS) working solution to blank plasma during sample processing.
- 5. The aforementioned samples were subsequently utilized for conducting several validation experiments and assessing samples from animal studies.

#### Extraction procedure for Bio-Sample analysis.

The protein precipitation method was employed to extract Sacubitril and Valsartan from rat plasma, utilizing Emtricitabine as an internal standard (IS), in the subsequent procedure.

In this experiment, a total of  $750\mu l$  of plasma was combined with  $500\mu l$  of internal standard and an additional  $250\mu l$  of Eluite. The mixture was subjected to a 15-second cyclomixing process. Following this, 1 ml of acetonitrile was added to the mixture, and the resulting solution was subjected to vertexing for a duration of 2 minutes. Subsequently, the solution was centrifuged at a speed of 3200 rpm for a period of 5 minutes, allowing for the collection of the supernatant sample. To ensure the removal of any impurities, the sample was then filtered using a polyvinylidene fluoride or polyvinylidene difluoride  $0.45\mu$  filter. Finally,  $10\mu$ L of the filtered sample was injected into the high-performance liquid chromatography (HPLC) system for further analysis.

#### **Data analysis**

The Analyst software version empower 2 was used to data acquisition and analysis, and additionally, a validated excel sheet was used to compute the statistics like mean, SD and %CV for analytical values generated during method validation.

## Validation Methodology in bioanalytical method: - System Suitability Parameter

System Suitability test are performed that the test mixture is essential to check the specifications of a liquid chromatographic system. The System suitability testing limits are acceptance criteria that must be prior to sample analysis.

**Methodology:** The experiment involves the administration of six quality control samples of MQC from a single vial at the beginning of the study.

Acceptance criteria: The criteria acceptance accordingly as the % CV of the retention time (RT) should be  $\leq 2.00$  %., The % CV of the area ratio should be  $\leq 5.00$  %.

#### **Auto Sampler Carryover**

Carry-over is an alteration of a measured concentration due to residual analyte from a preceding sample that remains in the analytical instrument, during validation carry-over should be assessed by analyzing blank samples after the calibration standard at the ULOQ.

**Methodology:** The high-performance liquid chromatography (HPLC) technology was evaluated in order to investigate the potential occurrence of carry-over. The carryover was evaluated by injecting the following samples in a sequential manner.

- Blank refers to a solution that is used as a mobile phase and contains water as the solvent.
- Standard\_QC (ULOQ).
- Blank
- Standard QC (ULOQ)
- lower standard (AQ LLOQ)

Acceptance criteria: - The carryover area response in subsequent injections of RS or STD Bulk after aqueous or extracted ULOQ should be  $\leq 20.00$  % of the equivalent aqueous or extracted LLOQ standard area.

#### Specificity and Screening of Biological matrix

Specificity is the ability of a bioanalytical method to detect and differentiate the analyte from other substances, including its related substances (e.g., substances that are structurally similar to the analyte, metabolites, isomer, impurities, and degradation products formed during sample preparation or concomitant medications that are expected to be used in the treatment of patients with the intended indication).

**Methodology:** Specificity is determined by the injecting six samples of standard solution and the LLOQC sample solution and

Acceptance criteria: - check the % Interference Response of interfering peaks in STD Blk at the retention time of analyte should be  $\leq 20.00$  % of that in LLOQ and At least 80 % of the matrix lots (Biological

Sample) with intended anticoagulant should be within the acceptance criteria.

#### Sensitivity

Sensitivity is often interpreted as related to the detection/determination ability, LLOQ based on precision and accuracy (bias) data, this is probably the most practical approach and defines the LLOQ as the lowest concentration of a sample that can still be quantified with acceptable Limit.

**Methodology**: - the sensitivity is performed by injecting six injections of lower concentration of sample (LLOQ). **Acceptance criteria:** -the acceptance criteria of sensitivity of LLOQ are At least 67 % (4 out of 6) of samples should be within 80.00-120.00 %.

#### **Matrix Factor evaluation**

A matrix effect is defined as an alteration of the analyte response due to interfering and often unidentified component(s) in the sample matrix. During method validation it is necessary to evaluate the matrix effect between different independent sources/lots.

**Methodology**: - The matrix effect should be evaluated by analyzing at least 3 replicates of **low and high QCs** (**LQC and HQC**), each prepared using matrix from at least 6 different sources/lots.

Acceptance criteria: - The accuracy should be within  $\pm 15\%$  of the nominal concentration and the precision (per cent coefficient of variation (%CV)) should not be greater than 15% in all individual matrix sources/lots.

#### **Linearity (Calibration Curve and Range)**

the relationship between the nominal analyte concentration and the response of the analytical platform to the analyte, Calibration standards, prepared by spiking matrix with a known quantity of analyte, span the calibration range and comprise the calibration curve. Calibration standards should be prepared in the same biological matrix as the study samples.

**Methodology**: - The calibration range is obtained by injecting 6 concentrations of calibration standards not including blank and zero samples and establishing the concentration-response relationship by the sample regression model method

**Acceptance criteria:** - The % accuracy for all CC standards except of LLOQ (STD 1) standard should be within 85.00-115.00 %. The % accuracy for LLOQ standard should be within 80.00-120.00 %.

#### **Rugged Linearity**

Linearity ruggedness is a measure for the susceptibility of a method to small changes that might occur during routine analysis,

**Methodology**: -The calibration range is obtained by injecting 6 concentrations of calibration standards not including blank and zero samples and establishing the concentration-response relationship by the sample regression model method and

**Acceptance criteria:** - The % accuracy for all CC standards except of LLOQ (STD 1) standard should be within 85.00-115.00 %. The % accuracy for LLOQ standard should be within 80.00-120.00 %.

#### Precision and Accuracy (Intra-day)

Accuracy and precision should be determined by analysing the QCs within each run (within-run) and in different runs (between-run). Accuracy and precision should be evaluated using the same runs and data.

#### Methodology: -

The test is performed injecting the QC samples were injected 6 replicates at each qc concentration level in each analytical run.

Acceptance criteria: - The overall accuracy at each concentration level should be within  $\pm 15\%$  of the nominal concentration, except at the LLOQ, where it should be within  $\pm 20\%$ . The precision (%CV) of the concentrations determined at each level should not exceed 15%, except at the LLOQ, where it should not exceed 20%.

#### Rugged Precision and Accuracy (Inter-Day)

Accuracy and precision should be evaluated using the same runs and data.

**Methodology**: -The test is performed injecting the QC samples were injected 6 replicates at each qc concentration level in each analytical run

Acceptance criteria: the overall accuracy at each concentration level should be within  $\pm 15\%$  of the nominal concentration, except at the LLOQ, where it should be within  $\pm 20\%$ . The precision (%CV) of the concentrations determined at each level should not exceed 15%, except at the LLOQ, where it should not exceed 20%.

#### Recovery

Recovery was determined by measuring the peak areas obtained from prepared plasma samples with those extracted blank plasma spiked with standards containing the same area with known amount of Drug.

**Methodology**: -The recoveries for Sucubitril and Valsartan

at LQC, MQC and HQC levels the results demonstrated that the bioanalytical method had good extraction efficiency by injecting the six samples of LQC, MQC and HQC with the main drug and check the interference with unextracted and extracted

#### Acceptance criteria:

The % CV of recovery at each QC level should be  $\leq$  15.00 %. The overall mean recovery % CV for all QC levels should be  $\leq$  20.00 %.

#### **Recovery of Internal Standard**

The measuring the peak areas obtained from prepared plasma samples with those extracted blank plasma spiked with Internal Standards containing the same area with known amount of Drug.

**Methodology**: -The recoveries for IS at 6 replicates the results demonstrated that the bioanalytical method had good extraction efficiency by injecting the six samples and check the interference with unextracted and extracted.

**Acceptance criteria:** The % CV of recovery at each QC level should be  $\leq 15.00$  %. The overall mean recovery % CV for all QC levels should be  $\leq 20.00$  %.

#### **Reinjection Reproducibility**

Reproducibility of the method is assessed by replicate measurements of the QCs and is usually included in the assessment of precision and accuracy. However, if samples could be reinjected (e.g., in the case of instrument interruptions or other reasons such as equipment failure), reinjection reproducibility should be evaluated and included in the Validation Report or provided in the Bioanalytical Report of the study where it was conducted.

**Methodology**: -The reproducibility was performed by injecting the qc samples in 6 replicates and check the acceptance limits.

**Acceptance criteria:** The % mean accuracy for LQC, MQC and HQC samples should be within 85.00-115.00 % and for the LLOQ QC sample it should be within 80.00-120.00 %.

#### **Stabilities**

Stability evaluations should be carried out to ensure that every step taken during sample preparation, processing and analysis as well as the storage conditions used do not affect the concentration of the analyte.

**Methodology**: -The stability is assessed by long term stock solution stability and Matrix samples stability at - **Optimized method:** 

28±5 °C for 37 days & -80±5 °C, stability testing is performed by injecting the QC samples of high and low concentrations(HQC and LQC) with taken biological matrix

**Acceptance criteria:** The mean concentration at each QC level should be within  $\pm 15\%$  of the nominal.

### RESULTS AND DISCUSSIONS METHOD DEVELOPMENT

Based on drug solubility and  $P^{ka}$  Value following conditions has been used to develop the method estimation of Sacubitril and Valsartan as per current ICH guidelines.

#### Optimization of the chromatographic conditions

For developing the method for the assay of Sacubitril and Valsartan, a systematic study of the effect of various factors was undertaken by varying one parameter at a time and keeping all the other conditions constant. The following studies were conducted for this purpose. A hy purity advance C18column was chosen as the stationary phase for this study. The mobile phase and the flow rate in order to get sharp peaks and base line separation of the components, the author has carried out a number of experiments by varying the commonly used solvents, their compositions and flow rate. To effect ideal separation of the drug under isocratic conditions, mixtures of commonly used solvents like water, methanol and acetonitrile with or without buffers in different combinations were tested as mobile phases on a C18 stationary phase. A binary mixture of acetonitrile and 0.01N Sodium dihyrogen ortho phosphate buffer in a ratio of 70:20 v/v was proved to be the most suitable of all the combinations since the chromatographic peaks obtained were well defined and resolved and free from tailing. A mobile phase flow rate of 0.3mL/min was found to be suitable.

**Table4: Chromatographic conditions** 

|                     | Table4. Circulatographic conditions |
|---------------------|-------------------------------------|
| Mobile phase        | : Acetonitrile: Na2HPo4 (20:70)     |
| Flow rate           | : 0.3ml/min                         |
| Column              | : CHS (50mm x 2.1 mm, 1.8μ)         |
| Detector wavelength | : 260nm                             |
| Column temperature  | : 42°C                              |
| Injection volume    | : 1.0μL                             |
| Run time            | : 4.0min                            |

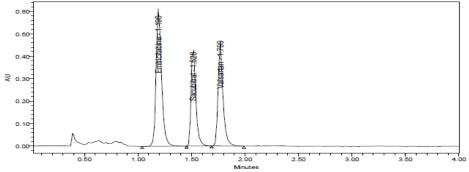



Fig no 15: Chromatogram of Optimized

Table5: Observation of Optimized Chromatogram

|   | Peak Name     | RT    | Area  | USP Plate Count | USP Resolution | USP Tailing |
|---|---------------|-------|-------|-----------------|----------------|-------------|
| 1 | Emtricitabine | 1.196 | 97586 | 2465.5          |                | 1.2         |
| 2 | Sacubitral    | 1.528 | 11465 | 4572.5          | 3.5            | 1.2         |
| 3 | Valsartan     | 1.799 | 67765 | 6263.5          | 3.5            | 1.2         |

**Observation:** Sacubitril and Valsartan and Internal Standard were eluted at 1.528 min, 1.788min respectively and 1.196 min(IS) with good resolution. Plate count and tailing factor was very satisfactory, so this method was optimized and to be validated. Drugs were eluted with good retention time, resolution; all the system suitable parameters like Plate count and Tailing factor were within the limits

#### METHOD VALIDATION

#### System suitability of Sacubitril and Valsartan

This system suitability method is intended to guarantee that the UPLC system is working in such a way that correct and reproducible data may be submitted to regulatory agencies with confidence. This procedure includes signal stability, carryover, and instrument response tests.

Table 6: System Suitability of Sacubitril and Valsartan

|                    |           |         | admity of Sacub |                                               |          |          |
|--------------------|-----------|---------|-----------------|-----------------------------------------------|----------|----------|
| Sample Name        | File Name | Analyte | Analyte         | ISTD                                          | ISTD     | Area     |
|                    |           | Area    | RT (min)        | Area                                          | RT (min) | Ratio    |
| AQ MQC             |           | 34278   | 4.28            | 97580                                         | 2.565    | 0.3513   |
| AQ MQC             |           | 34336   | 4.30            | 97623                                         | 2.565    | 0.3517   |
| AQ MQC             |           | 34380   | 4.36            | 97593                                         | 2.566    | 0.3523   |
| AQ MQC             |           | 34425   | 4.37            | 97720                                         | 2.571    | 0.3523   |
| AQ MQC             |           | 34486   | 4.37            | 97815                                         | 2.594    | 0.3526   |
| AQ MQC             |           | 34538   | 4.38            | 97872                                         | 2.597    | 0.3529   |
| MEAN               | 1         | 0 1300  | 4.346           | 27072                                         | 2.576    | 0.35217  |
| SD                 |           |         | 0.0434          | -                                             | 0.0150   | 0.000581 |
| %CV                |           |         | 1.00            | +                                             | 0.58     | 0.17     |
|                    |           |         | 1.00            |                                               | 0.50     | 0.17     |
| System Suitability |           |         |                 |                                               | T        | Γ.       |
| Sample Name        | File      | Analyte | Analyte         | ISTD                                          | ISTD     | Area     |
|                    | Name      | Area    | RT (min)        | Area                                          | RT (min) | Ratio    |
| AQ MQC             |           | 5823    | 3.11            | 97580                                         | 2.565    | 0.0597   |
| AQ MQC             |           | 5890    | 3.13            | 97623                                         | 2.565    | 0.0603   |
| AQ MQC             |           | 5763    | 3.13            | 97593                                         | 2.566    | 0.0591   |
| AQ MQC             |           | 5823    | 3.13            | 97720                                         | 2.571    | 0.0596   |
| AQ MQC             |           | 5862    | 3.18            | 97815                                         | 2.594    | 0.0599   |
| AQ MQC             |           | 5792    | 3.19            | 97872                                         | 2.597    | 0.0592   |
| MEAN               |           | 0.72    | 3.146           | , , , , <u>, , , , , , , , , , , , , , , </u> | 2.576    | 0.05963  |
| SD                 |           |         | 0.0316          |                                               | 0.0150   | 0.000475 |
| %CV                |           |         | 1.00            | =                                             | 0.58     | 0.80     |
| /0C V              |           |         | 1.00            |                                               | 0.30     | 0.00     |

**Discussion**: plate count, tailing factor, resolution of Sacubitril and Valsartan was According to ICH guidelines plate count should be more than 2000, tailing factor should be less than 2 and resolution must be more than 2. All the system suitable parameters were passed and were within the limits. The % CV of the retention time (RT) should be  $\leq 2.00$  %.

Auto sampler carryover of Sacubitril and Valsartan

The carryover was tracked back to the injection valve and eradicated by converting from a partial loop injection to a full loop injection, which allowed more effective cleansing of the sample flow channel. The UPLC system's susceptibility to carryover was shown to be dependent on the detection method's absolute sensitivity and the mass of analyte injected at the assay's lower limit of quantitation (LLOQ).

Table 7: Auto sampler carryover of Sacubitril and Valsartan

| Parameters       | Peak Are | •         | v     | % Carryo   |      |
|------------------|----------|-----------|-------|------------|------|
|                  | Drug     |           | ISTD  |            | ISTD |
| Unextracted samp | oles     |           |       |            |      |
| RS               | 0        | 0         |       | N/A        | N/A  |
| AQ ULOQ          | 69523    | 98        | 362   | 0.00       | 0.00 |
| RS               | 0        | 0         |       |            |      |
| AQ LLOQ          | 1792     | 97        | 980   | N/A        | N/A  |
| Extracted sample | S        |           |       |            |      |
| STD Blk          | 0        | 0         |       | N/A        | N/A  |
| ULOQ             | 68449    | 97        | 570   | 0.00       | 0.00 |
| STD Blk          | 0        | 0         |       |            |      |
| LLOQ             | 1709     | 97        | 532   | N/A        | N/A  |
| Parameters       |          | Peak Area |       | % Carryovo | er   |
|                  |          | Drug      | ISTD  | Drug       | ISTD |
| Unextracted samp | oles     |           |       |            |      |
| RS               |          | 0         | 0     | N/A        | N/A  |
| AQ ULOQ          |          | 22986     | 98623 | 0.00       | 0.00 |
| RS               |          | 0         | 0     |            |      |
| AQ LLOQ          |          | 594       | 98485 | N/A        | N/A  |
| Extracted sample | S        |           |       |            |      |
| STD Blk          |          | 0         | 0     | N/A        | N/A  |
| ULOQ             |          | 22720     | 97532 | 0.00       | 0.00 |
| STD Blk          |          | 0         | 0     |            |      |
| LLOQ             |          | 577       | 97539 | N/A        | N/A  |

**Discussion:** - The area obtained is less than 20 % of extracted LLOQ standard area to unextracted area by injected of replicate manner

#### **Specificity and Screening of Biological Matrix**

Specificity is the ability to assess unequivocally the analyte in the presence of components which may be expected to be present

Table 8 Specificity and Screening of Biological Matrix of Sacubitril and Valsartan

| S.No. | Parameters | Response |       | % Interfe      | % Interference |           |
|-------|------------|----------|-------|----------------|----------------|-----------|
|       |            | Drug     | ISTD  | Drug           | ISTD           |           |
| 1     | STD Blk1   | 0        | 0     | 0.00           | 0.00           | Pass      |
| 2     | LLOQ1      | 1709     | 97532 |                |                |           |
| 3     | STD Blk2   | 0        | 0     | 0.00           | 0.00           | Pass      |
| 4     | LLOQ2      | 1725     | 97625 |                |                |           |
| 5     | STD Blk3   | 0        | 0     | 0.00           | 0.00           | Pass      |
| 6     | LLOQ3      | 1718     | 97680 |                |                |           |
| 7     | STD Blk4   | 0        | 0     | 0.00           | 0.00           | Pass      |
| 8     | LLOQ4      | 1735     | 97762 |                |                |           |
| 9     | STD Blk5   | 0        | 0     | 0.00           | 0.00           | Pass      |
| 10    | LLOQ5      | 1738     | 97846 |                |                |           |
| 11    | STD Blk6   | 0        | 0     | 0.00           | 0.00           | Pass      |
| 12    | LLOQ6      | 1715     | 97558 |                |                |           |
| S.No. | Parameters | Response |       | % Interference |                | Pass/Fail |
|       |            | Drug     | ISTD  | Drug           | ISTD           |           |
| 1     | STD Blk1   | 0        | 0     | 0.00           | 0.00           | Pass      |

| 2  | LLOQ1    | 577 | 97577 |      |      |      |
|----|----------|-----|-------|------|------|------|
| 3  | STD Blk2 | 0   | 0     | 0.00 | 0.00 | Pass |
| 4  | LLOQ2    | 583 | 97862 |      |      |      |
| 5  | STD Blk3 | 0   | 0     | 0.00 | 0.00 | Pass |
| 6  | LLOQ3    | 592 | 97965 |      |      |      |
| 7  | STD Blk4 | 0   | 0     | 0.00 | 0.00 | Pass |
| 8  | LLOQ4    | 586 | 98120 |      |      |      |
| 9  | STD Blk5 | 0   | 0     | 0.00 | 0.00 | Pass |
| 10 | LLOQ5    | 568 | 97653 |      |      |      |
| 11 | STD Blk6 | 0   | 0     | 0.00 | 0.00 | Pass |
| 12 | LLOQ6    | 572 | 97590 |      |      |      |

**Observation:** We did not find and interfering peaks in blank and placebo at retention times of these drugs in this method. So this method was said to be specific.

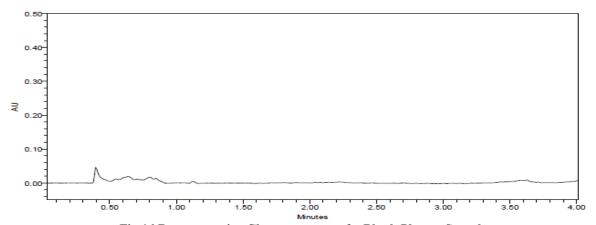



Fig.16 Representative Chromatogram of a Blank Plasma Sample

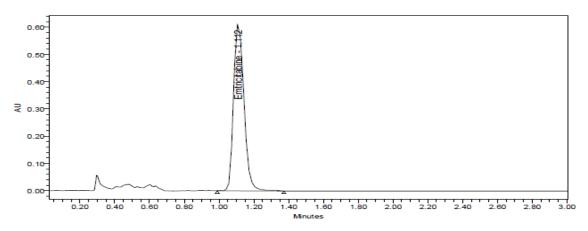



Fig. 17 Representative Chromatogram of Blank Plasma with Internal StandardSample

**Discussion** – The response areas obtained of analyte and internal standard are less than 20% and 5 % of LLoq Area. We did not find and interfering peaks in blank and placebo at retention times of these drugs in this method. So this method was said to be specific

#### Sensitivity

A sensitivity is defined as "the lowest analyte concentration that can be measured with acceptable accuracy and precision i.e., LLOQ

Table 9 Sensitivity of Sacubitril and Valsartan

|                           | ty of Sacubitril and Valsartan      |
|---------------------------|-------------------------------------|
| Sensitivity of Sacubitril |                                     |
| S No.                     | LLOQ                                |
|                           | Nominal Concentration (ng/mL)       |
|                           | 300.000                             |
|                           | Nominal Concentration Range (ng/mL) |
|                           | (240.000-360.000)                   |
|                           | Calculated Concentration (ng/mL)    |
| 1                         | 298.000                             |
| 2                         | 302.000                             |
| 3                         | 306.000                             |
| 4                         | 295.000                             |
| 5                         | 301.000                             |
| 6                         | 290.000                             |
| n                         | 6                                   |
| Mean                      | 298.6667                            |
| SD                        | 5.64506                             |
| % CV                      | 1.89                                |
| % Mean Accuracy           | 99.56                               |
| Sensitivity of Valsartan  | <u>.</u>                            |
| S No.                     | LLOQ                                |
|                           | Nominal Concentration (ng/mL)       |
|                           | 200.000                             |
|                           | Nominal Concentration Range (ng/mL) |
|                           | (160.000-240.000)                   |
|                           | Calculated Concentration (ng/mL)    |
| 1                         | 198.000                             |
| 2                         | 196.000                             |
| 3                         | 200.000                             |
| 4                         | 203.000                             |
| 5                         | 205.000                             |
| 6                         | 198.000                             |
| n                         | 6                                   |
| Mean                      | 200.0000                            |
| SD                        | 3.40588                             |
| % CV                      | 1.70                                |
| % Mean Accuracy           | 100.00                              |
|                           |                                     |

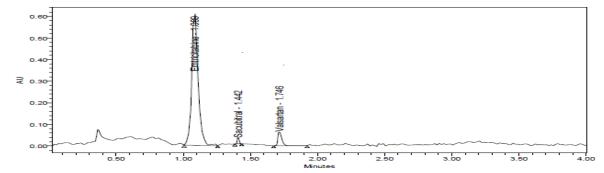



Figure 18: Sensitivity Chromatogram.

**Discussion:** - The LLOQ concentration was found between 80 -120 % and % Coefficient of variation found to be 1.87% and 1.70% of Valsartan and Sacubitril and Mean of 6 injections was found to be 99.56% & 100.00 % of Valsartan and Sacubitril within the acceptance limits. As the limit of Sensitivity % CV was less than "20%" the system Sensitivity was passed in this method.

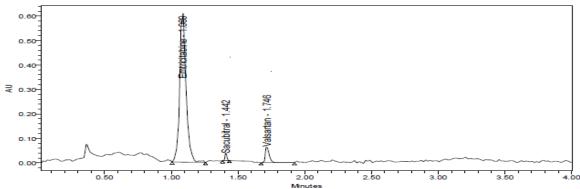



Figure 19: LLOQ Chromatogram

#### **Matrix factor evaluation**

Table 10 Matrix factor evaluation for Sacubitril (absence of matrix factor)

| Matrix Effection S. No. | Plasma Lot No.    | HQC                                 | LQC               |  |
|-------------------------|-------------------|-------------------------------------|-------------------|--|
| 5. 110.                 | I main 130t 1 (0. | Nominal Concentration (ng/mL)       |                   |  |
|                         |                   | 4800.000                            | 600.000           |  |
|                         |                   | Nominal Concentration Range (ng/mL) |                   |  |
|                         |                   | (4,080.000-5,520.000)               | (510.000-690.000) |  |
|                         |                   | Calculated Concentration            |                   |  |
| 1                       | LOT1              | 4830.000                            | 578.000           |  |
|                         |                   | 4750.000                            | 655.000           |  |
|                         |                   | 4871.000                            | 620.000           |  |
| 2                       | LOT2              | 4701.000                            | 601.000           |  |
|                         |                   | 4890.000                            | 574.000           |  |
|                         |                   | 4819.000                            | 565.000           |  |
| 3                       | LOT3              | 4782.000                            | 590.000           |  |
|                         |                   | 4825.000                            | 599.000           |  |
|                         |                   | 4875.000                            | 602.000           |  |
| 4                       | LOT4              | 4966.000                            | 555.000           |  |
|                         |                   | 4875.000                            | 609.000           |  |
|                         |                   | 4850.000                            | 596.000           |  |
| 5                       | LOT5              | 4812.000                            | 685.000           |  |
|                         |                   | 4810.000                            | 645.000           |  |
|                         |                   | 4789.000                            | 612.000           |  |
| 6                       | LOT6              | 4880.000                            | 627.000           |  |
|                         |                   | 4865.000                            | 630.000           |  |
|                         |                   | 4820.000                            | 615.000           |  |
| n                       | ·                 | 18                                  | 18                |  |
| Mean                    |                   | 4833.8889                           | 608.7778          |  |
| SD                      |                   | 59.24812                            | 32.44825          |  |
| % CV                    |                   | 1.23                                | 5.33              |  |
| % Mean Acc              | curacy            | 100.71                              | 101.46            |  |
| No. of QC Fa            | ailed             | 0                                   | 0                 |  |

Table 11: Matrix factor evaluation for Sacubitril

| S. No.       | Plasma Lot No. | HQC                           | LQC               |  |  |
|--------------|----------------|-------------------------------|-------------------|--|--|
|              |                | Nominal Concentration (ng/mL) |                   |  |  |
|              |                | 3200.000                      | 600.000           |  |  |
|              |                | <b>Nominal Concentrat</b>     | ion Range (ng/mL) |  |  |
|              |                | (2,720.000-3,680.000)         | (510.000-690.000) |  |  |
|              |                | <b>Calculated Concentr</b>    | ration (ng/mL)    |  |  |
| 1            | LOT1           | 3198.00                       | 599.00            |  |  |
|              |                | 3210.00                       | 605.00            |  |  |
|              |                | 3171.00                       | 601.00            |  |  |
| 2            | LOT2           | 3205.00                       | 566.00            |  |  |
|              |                | 3201.00                       | 617.00            |  |  |
|              |                | 3183.00                       | 591.00            |  |  |
| 3            | LOT3           | 3211.00                       | 613.00            |  |  |
|              |                | 3218.00                       | 621.00            |  |  |
|              |                | 3233.00                       | 632.00            |  |  |
| 4            | LOT4           | 3189.00                       | 628.00            |  |  |
|              |                | 3185.00                       | 616.00            |  |  |
|              |                | 3285.00                       | 598.00            |  |  |
| 5            | LOT5           | 3175.00                       | 652.00            |  |  |
|              |                | 3089.00                       | 618.00            |  |  |
|              |                | 3101.00                       | 605.00            |  |  |
| 6            | LOT6           | 3088.00                       | 599.00            |  |  |
|              |                | 3199.00                       | 618.00            |  |  |
|              |                | 3179.00                       | 617.00            |  |  |
| n            |                | 18                            | 18                |  |  |
| Mean         |                | 3184.4444                     | 610.8889          |  |  |
| SD           |                | 49.55238                      | 18.41320          |  |  |
| % CV         |                | 1.56                          | 3.01              |  |  |
| % Mean Acc   | uracy          | 99.51                         | 101.81            |  |  |
| No. of QC Fa |                | 0                             | 0                 |  |  |

**Discussion-** The Evaluation of Matrix by injecting the QC samples of high and low concentrations in 6 lots the %Mean obtained was 100.71% and 101.46 of HQC and LOQ of Valsartan & 99.51% and 101.81% of HQC and LOQ of Sacubitril and % CV obtained are 1.23% and 5.33% of HQC and LOQ of Valsartan & % CV obtained are 1.56% and 3.01% of HQC and LOQ of Sacubitril. As the limit of CV was, less than "20%" the system Matrix was passed in this method.

#### Linearity:

Table 12: Linearity of Sacubitril and Valsartan

|                    | STD1       | STD2                          | STD3           | STD4        | STD5        | STD6        | STD7        | STD8        |  |  |
|--------------------|------------|-------------------------------|----------------|-------------|-------------|-------------|-------------|-------------|--|--|
|                    | Nominal C  | Nominal Concentration (ng/mL) |                |             |             |             |             |             |  |  |
|                    | 300.000    | 600.000                       | 900.000        | 2400.000    | 3000.000    | 3600.000    | 4800.000    | 6000.000    |  |  |
|                    | Nominal C  | oncentration                  | Range (ng/m    | ıL)         |             |             |             |             |  |  |
|                    | (240.000-  | (510.000-                     | (765.000-      | (2,040.000- | (2,550.000- | (3,060.000- | (4,080.000- | (5,100.000- |  |  |
|                    | 360.000)   | 690.000)                      | 1,035.000)     | 2,760.000)  | 3,450.000)  | 4,140.000)  | 5,520.000)  | 6,900.000)  |  |  |
|                    | Back Calcu | ulated Conce                  | ntration (ng/ı | mL)         |             |             |             |             |  |  |
| P&A1               | 290.000    | 590.000                       | 916.000        | 2399.00     | 2999.00     | 3697.00     | 4790.00     | 6001.00     |  |  |
| P&A2               | 295.000    | 595.000                       | 905.000        | 2419.00     | 3010.00     | 3602.00     | 4894.00     | 5999.00     |  |  |
| P&A3               | 301.000    | 605.000                       | 909.000        | 2401.00     | 3000.00     | 3670.00     | 4808.00     | 6010.00     |  |  |
| n                  | 3          | 3                             | 3              | 3           | 3           | 3           | 3           | 3           |  |  |
| Mean               | 295.3333   | 596.6667                      | 910.0000       | 2406.3333   | 3003.0000   | 3656.3333   | 4830.6667   | 6003.3333   |  |  |
| SD                 | 5.50757    | 7.63763                       | 5.56776        | 11.01514    | 6.08276     | 48.95236    | 55.58177    | 5.85947     |  |  |
| %CV                | 1.86       | 1.28                          | 0.61           | 0.46        | 0.20        | 1.34        | 1.15        | 0.10        |  |  |
| % Mean<br>Accuracy | 98.44      | 99.44                         | 101.11         | 100.26      | 100.10      | 101.56      | 100.64      | 100.06      |  |  |

**Table 13: Linearity of Valsartan** 

|          |            |                               | Iubic          | 15. Linearit | or varsarear |             |             |             |  |
|----------|------------|-------------------------------|----------------|--------------|--------------|-------------|-------------|-------------|--|
|          | STD1       | STD2                          | STD3           | STD4         | STD5         | STD6        | STD7        | STD8        |  |
|          | Nominal C  | Nominal Concentration (ng/mL) |                |              |              |             |             |             |  |
|          | 200.000    | 400.000                       | 600.000        | 1600.000     | 2000.000     | 2400.000    | 3200.000    | 4000.000    |  |
|          | Nominal C  | oncentration                  | Range (ng/n    | ıL)          |              |             |             |             |  |
|          | (160.000-  | (340.000-                     | (510.000-      | (1,360.000-  | (1,700.000-  | (2,040.000- | (2,720.000- | (3,400.000- |  |
|          | 240.000)   | 460.000)                      | 690.000)       | 1,840.000)   | 2,300.000)   | 2,760.000)  | 3,680.000)  | 4,600.000)  |  |
|          | Back Calcu | llated Concer                 | ntration (ng/1 | mL)          |              |             |             |             |  |
| P&A1     | 189.000    | 402.000                       | 595.000        | 1589.000     | 1989.000     | 2382.000    | 3125.000    | 3989.000    |  |
| P&A2     | 211.000    | 389.000                       | 598.000        | 1625.000     | 2089.000     | 2474.000    | 3189.000    | 3992.000    |  |
| P&A3     | 195.000    | 405.000                       | 609.000        | 1601.000     | 1985.000     | 2401.000    | 3219.000    | 4018.000    |  |
| n        | 3          | 3                             | 3              | 3            | 3            | 3           | 3           | 3           |  |
| Mean     | 198.3333   | 398.6667                      | 600.6667       | 1605.0000    | 2021.0000    | 2419.0000   | 3177.6667   | 3999.6667   |  |
| SD       | 11.37248   | 8.50490                       | 7.37111        | 18.33030     | 58.92368     | 48.56954    | 48.01389    | 15.94783    |  |
| %CV      | 5.73       | 2.13                          | 1.23           | 1.14         | 2.92         | 2.01        | 1.51        | 0.40        |  |
| % Mean   | 99.17      | 99.67                         | 100.11         | 100.31       | 101.05       | 100.79      | 99.30       | 99.99       |  |
| Accuracy |            |                               |                |              |              |             |             |             |  |

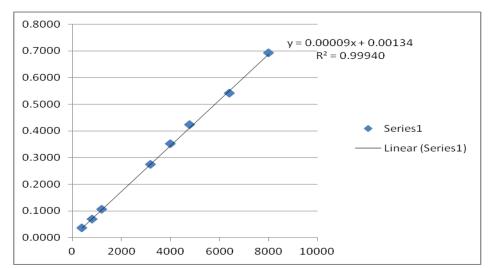



Figure Representative Calibration Curve for sacubitril

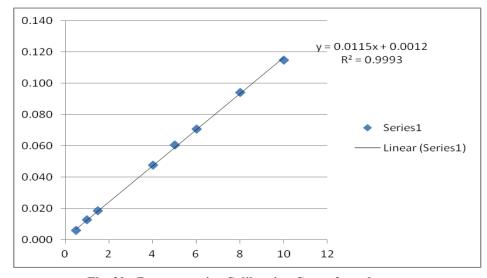



Fig. 20: Representative Calibration Curve for valsartan

**Discussion**:- Calibration was found to be linear over the concentration range of 0.15 to 6  $\mu$ g /ml. The coefficient correlation ( $r^2$ ) value was found consistently greater than 0.999 in all the cases. This indicating linearity of results and an excellent correlation between peak area ratios for each concentration of analytes.

#### Precision and accuracy (intra-day runs of Sacubitril and Valsartan)

Table 14: precision data for intra-day runs of Sacubitril and Valsartan

| Table 14 : precision Precision and Accuracy of Sacubitril | uata for intra-u                    | ay runs of Sacub  | urii anu vaisar | tan       |  |  |  |
|-----------------------------------------------------------|-------------------------------------|-------------------|-----------------|-----------|--|--|--|
| •                                                         | HQC                                 | MQC1              | LQC             | LLOQ QC   |  |  |  |
|                                                           |                                     | centration (ng/m  |                 | LLOQ QC   |  |  |  |
|                                                           | 4800.000                            | 3000.000          | 600.000         | 300.000   |  |  |  |
|                                                           | 4000.000                            | 3000.000          | 000.000         | 300.000   |  |  |  |
|                                                           | Nominal Concentration Range (ng/mL) |                   |                 |           |  |  |  |
|                                                           | (4,080.000-                         | (2,550.000-       | (510.000-       | (240.000- |  |  |  |
|                                                           | 5,520.000                           | 3,450.000         | 690.000)        | 360.000   |  |  |  |
|                                                           |                                     | ted Concentratio  |                 | 300.000)  |  |  |  |
|                                                           | Dack Calcula                        | teu Concenti atto | n (ng/mL)       |           |  |  |  |
|                                                           | 4700.00                             | 2995.00           | 500.000         | 205 000   |  |  |  |
|                                                           | 4799.00                             | 2995.00           | 599.000         | 295.000   |  |  |  |
|                                                           |                                     |                   |                 |           |  |  |  |
|                                                           | 4801.00                             | 3001.00           | 539.000         | 299.000   |  |  |  |
|                                                           |                                     |                   |                 |           |  |  |  |
|                                                           | 4820.00                             | 3010.00           | 589.000         | 300.000   |  |  |  |
|                                                           |                                     |                   |                 |           |  |  |  |
|                                                           | 4789.00                             | 2920.00           | 679.000         | 310.000   |  |  |  |
|                                                           | 22.22                               |                   | 3               |           |  |  |  |
|                                                           | 4800.00                             | 2990.00           | 607.000         | 298.000   |  |  |  |
|                                                           | 7000.00                             | 2770.00           | 007.000         | 270.000   |  |  |  |
|                                                           | 4010.00                             | 2000 00           | (10,000         | 207.000   |  |  |  |
|                                                           | 4810.00                             | 2989.00           | 610.000         | 297.000   |  |  |  |
|                                                           |                                     |                   |                 |           |  |  |  |
| n                                                         | 6                                   | 6                 | 6               | 6         |  |  |  |
|                                                           |                                     |                   |                 |           |  |  |  |
| Mean                                                      | 4803.1667                           | 2984.1667         | 603.8333        | 299.8333  |  |  |  |
|                                                           |                                     |                   |                 |           |  |  |  |
| SD                                                        | 10.60974                            | 32.38158          | 45.04405        | 5.26941   |  |  |  |
|                                                           |                                     |                   |                 |           |  |  |  |
| %CV                                                       | 0.22                                | 1.09              | 7.46            | 1.76      |  |  |  |
|                                                           |                                     |                   |                 |           |  |  |  |
| % Mean Accuracy                                           | 100.07                              | 99.47             | 100.64          | 99.94     |  |  |  |
| , , , , , , , , , , , , , , , , , , , ,                   |                                     |                   |                 |           |  |  |  |
|                                                           | 4896.00                             | 2888.00           | 598.000         | 299.000   |  |  |  |
|                                                           | 1070.00                             | 2000.00           | 370.000         | 255.000   |  |  |  |
|                                                           | 4000.00                             | 2999.00           | 602 000         | 202.000   |  |  |  |
|                                                           | 4900.00                             | 4333.00           | 602.000         | 292.000   |  |  |  |
|                                                           | 4007.00                             | 2001.00           | (12.000         | 200.000   |  |  |  |
|                                                           | 4995.00                             | 3001.00           | 612.000         | 300.000   |  |  |  |
|                                                           |                                     |                   |                 |           |  |  |  |
|                                                           | 4940.00                             | 2889.00           | 590.000         | 301.000   |  |  |  |
|                                                           |                                     |                   |                 |           |  |  |  |
|                                                           | 4811.00                             | 3011.00           | 596.000         | 299.000   |  |  |  |
|                                                           |                                     |                   |                 |           |  |  |  |
|                                                           | 4985.00                             | 3000.00           | 601.000         | 310.000   |  |  |  |
|                                                           |                                     |                   |                 |           |  |  |  |
| n                                                         | 6                                   | 6                 | 6               | 6         |  |  |  |
|                                                           |                                     |                   |                 |           |  |  |  |
| Mean                                                      | 4921.1667                           | 2964.6667         | 599.8333        | 300.1667  |  |  |  |
| Medi                                                      | 7/41.100/                           | 4704.000/         | 3/7.0333        | 300.100/  |  |  |  |
| CD                                                        | (7.0/007                            | 50 15(20          | 7 22250         | 5 77 (20  |  |  |  |
| SD                                                        | 67.96887                            | 59.15629          | 7.33258         | 5.77639   |  |  |  |
| A/ CVI                                                    | 1.00                                | 0.00              | 1.00            | 1.05      |  |  |  |
| %CV                                                       | 1.38                                | 2.00              | 1.22            | 1.92      |  |  |  |
|                                                           |                                     |                   |                 |           |  |  |  |

| 0/ 3/1                              | 102.52                    | 00.03                     | 00.07                 | 100.07                |
|-------------------------------------|---------------------------|---------------------------|-----------------------|-----------------------|
| % Mean Accuracy                     | 102.52                    | 98.82                     | 99.97                 | 100.06                |
|                                     | 4800.00                   | 2892.00                   | 591.000               | 289.000               |
|                                     | 4920.00                   | 2985.00                   | 604.000               | 299.000               |
|                                     | 4899.00                   | 3001.00                   | 589.000               | 307.000               |
|                                     | 4888.00                   | 3020.00                   | 607.000               | 305.000               |
|                                     | 4874.00                   | 2986.00                   | 579.000               | 300.000               |
|                                     | 4985.00                   | 3110.00                   | 600.000               | 301.000               |
| n                                   | 6                         | 6                         | 6                     | 6                     |
| Mean                                | 4894.3333                 | 2999.0000                 | 595.0000              | 300.1667              |
| SD                                  | 60.42075                  | 70.11419                  | 10.56409              | 6.27429               |
| %CV                                 | 1.23                      | 2.34                      | 1.78                  | 2.09                  |
| % Mean Accuracy                     | 101.97                    | 99.97                     | 99.17                 | 100.06                |
| Between Batch Precision and Accur   | acy                       |                           |                       |                       |
| n                                   | 18                        | 18                        | 18                    | 18                    |
| Mean                                | 4872.8889                 | 2982.6111                 | 599.5556              | 300.0556              |
| SD                                  | 71.87644                  | 54.70685                  | 25.67494              | 5.43921               |
| %CV                                 | 1.48                      | 1.83                      | 4.28                  | 1.81                  |
| % Mean Accuracy                     | 101.52                    | 99.42                     | 99.93                 | 100.02                |
| Precision and Accuracy of Valsartan | <br>l                     |                           |                       |                       |
|                                     | HQC                       | MQC1                      | LQC                   | LLOQ QC               |
|                                     | Nominal Con               | centration (ng/m          | L)                    |                       |
|                                     | 4800.000                  | 3000.000                  | 600.000               | 300.000               |
|                                     | Nominal Con               | centration Rang           | e (ng/mL)             | <b>I</b>              |
|                                     | (4,080.000-<br>5,520.000) | (2,550.000-<br>3,450.000) | (510.000-<br>690.000) | (240.000-<br>360.000) |
|                                     | Back Calcula              | ted Concentratio          | on (ng/mL)            |                       |
|                                     |                           |                           |                       |                       |

|                             | 4801.00                                                                               | 3001.00                                                                              | 539.000                                                                              | 299.000                                                                                |
|-----------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
|                             | 4820.00                                                                               | 3010.00                                                                              | 589.000                                                                              | 300.000                                                                                |
|                             | 4789.00                                                                               | 2920.00                                                                              | 679.000                                                                              | 310.000                                                                                |
|                             | 4800.00                                                                               | 2990.00                                                                              | 607.000                                                                              | 298.000                                                                                |
|                             | 4810.00                                                                               | 2989.00                                                                              | 610.000                                                                              | 297.000                                                                                |
| n                           | 6                                                                                     | 6                                                                                    | 6                                                                                    | 6                                                                                      |
| Mean                        | 4803.1667                                                                             | 2984.1667                                                                            | 603.8333                                                                             | 299.8333                                                                               |
| SD                          | 10.60974                                                                              | 32.38158                                                                             | 45.04405                                                                             | 5.26941                                                                                |
| %CV                         | 0.22                                                                                  | 1.09                                                                                 | 7.46                                                                                 | 1.76                                                                                   |
| % Mean Accuracy             | 100.07                                                                                | 99.47                                                                                | 100.64                                                                               | 99.94                                                                                  |
| /v mean accuracy            | 4896.00                                                                               | 2888.00                                                                              | 598.000                                                                              | 299.000                                                                                |
|                             |                                                                                       |                                                                                      |                                                                                      |                                                                                        |
|                             | 4900.00                                                                               | 2999.00                                                                              | 602.000                                                                              | 292.000                                                                                |
|                             | 4995.00                                                                               | 3001.00                                                                              | 612.000                                                                              | 300.000                                                                                |
|                             | 4940.00                                                                               | 2889.00                                                                              | 590.000                                                                              | 301.000                                                                                |
|                             | 4811.00                                                                               | 3011.00                                                                              | 596.000                                                                              | 299.000                                                                                |
|                             | 4985.00                                                                               | 3000.00                                                                              | 601.000                                                                              | 310.000                                                                                |
| n                           | 6                                                                                     | 6                                                                                    | 6                                                                                    | 6                                                                                      |
| Mean                        | 4921.1667                                                                             | 2964.6667                                                                            | 599.8333                                                                             | 300.1667                                                                               |
|                             |                                                                                       |                                                                                      |                                                                                      |                                                                                        |
| SD                          | 67.96887                                                                              | 59.15629                                                                             | 7.33258                                                                              | 5.77639                                                                                |
| SD %CV                      | 67.96887                                                                              | 59.15629                                                                             | 7.33258                                                                              | 5.77639                                                                                |
|                             |                                                                                       |                                                                                      |                                                                                      |                                                                                        |
| %CV                         | 1.38                                                                                  | 2.00                                                                                 | 1.22                                                                                 | 1.92                                                                                   |
| %CV                         | 1.38                                                                                  | 2.00                                                                                 | 99.97                                                                                | 1.92                                                                                   |
| %CV                         | 1.38<br>102.52<br>4800.00<br>4920.00                                                  | 2.00<br>98.82<br>2892.00<br>2985.00                                                  | 1.22<br>99.97<br>591.000<br>604.000                                                  | 1.92<br>100.06<br>289.000<br>299.000                                                   |
| %CV                         | 1.38<br>102.52<br>4800.00                                                             | 2.00<br>98.82<br>2892.00<br>2985.00<br>3001.00                                       | 1.22<br>99.97<br>591.000<br>604.000<br>589.000                                       | 1.92<br>100.06<br>289.000<br>299.000<br>307.000                                        |
| %CV                         | 1.38<br>102.52<br>4800.00<br>4920.00<br>4899.00                                       | 2.00<br>98.82<br>2892.00<br>2985.00                                                  | 1.22<br>99.97<br>591.000<br>604.000                                                  | 1.92<br>100.06<br>289.000<br>299.000                                                   |
| %CV                         | 1.38<br>102.52<br>4800.00<br>4920.00<br>4899.00<br>4888.00<br>4874.00<br>4985.00      | 2.00<br>98.82<br>2892.00<br>2985.00<br>3001.00<br>3020.00<br>2986.00<br>3110.00      | 1.22<br>99.97<br>591.000<br>604.000<br>589.000<br>607.000<br>579.000<br>600.000      | 1.92<br>100.06<br>289.000<br>299.000<br>307.000<br>305.000<br>300.000<br>301.000       |
| %CV                         | 1.38<br>102.52<br>4800.00<br>4920.00<br>4899.00<br>4888.00<br>4874.00                 | 2.00<br>98.82<br>2892.00<br>2985.00<br>3001.00<br>3020.00<br>2986.00                 | 1.22<br>99.97<br>591.000<br>604.000<br>589.000<br>607.000<br>579.000                 | 1.92<br>100.06<br>289.000<br>299.000<br>307.000<br>305.000<br>300.000                  |
| %CV % Mean Accuracy         | 1.38<br>102.52<br>4800.00<br>4920.00<br>4899.00<br>4888.00<br>4874.00<br>4985.00<br>6 | 2.00<br>98.82<br>2892.00<br>2985.00<br>3001.00<br>3020.00<br>2986.00<br>3110.00<br>6 | 1.22<br>99.97<br>591.000<br>604.000<br>589.000<br>607.000<br>579.000<br>600.000<br>6 | 1.92<br>100.06<br>289.000<br>299.000<br>307.000<br>305.000<br>300.000<br>301.000<br>6  |
| %CV % Mean Accuracy         | 1.38<br>102.52<br>4800.00<br>4920.00<br>4899.00<br>4888.00<br>4874.00<br>4985.00<br>6 | 2.00<br>98.82<br>2892.00<br>2985.00<br>3001.00<br>3020.00<br>2986.00<br>3110.00      | 1.22<br>99.97<br>591.000<br>604.000<br>589.000<br>607.000<br>579.000<br>600.000<br>6 | 1.92<br>100.06<br>289.000<br>299.000<br>307.000<br>305.000<br>300.000<br>301.000       |
| %CV % Mean Accuracy  n Mean | 1.38<br>102.52<br>4800.00<br>4920.00<br>4899.00<br>4888.00<br>4874.00<br>4985.00<br>6 | 2.00<br>98.82<br>2892.00<br>2985.00<br>3001.00<br>3020.00<br>2986.00<br>3110.00<br>6 | 1.22<br>99.97<br>591.000<br>604.000<br>589.000<br>607.000<br>579.000<br>600.000<br>6 | 1.92<br>100.06<br>289.000<br>299.000<br>307.000<br>305.000<br>300.000<br>6<br>300.1667 |

| n               | 18        | 18        | 18       | 18       |
|-----------------|-----------|-----------|----------|----------|
| Mean            | 4872.8889 | 2982.6111 | 599.5556 | 300.0556 |
|                 |           |           |          |          |
| SD              | 71.87644  | 54.70685  | 25.67494 | 5.43921  |
| %CV             | 1.48      | 1.83      | 4.28     | 1.81     |
| % Mean Accuracy | 101.52    | 99.42     | 99.93    | 100.02   |

### Rugged Precision and Accuracy (inter-day runs of Sacubitril and Valsartan) Table 15: precision data for inter-day runs of Sacubitril and Valsartan

|                          |                 | or inter-day runs of S              | Sacubitril and Valsartan |                   |  |  |  |  |
|--------------------------|-----------------|-------------------------------------|--------------------------|-------------------|--|--|--|--|
| Ruggedness Precision and |                 |                                     |                          |                   |  |  |  |  |
|                          | HQC             | MQC1                                | LQC                      | LLOQ QC           |  |  |  |  |
|                          | Nominal Concen  | tration (ng/mL)                     |                          |                   |  |  |  |  |
|                          | 3200.000        | 2000.000                            | 600.000                  | 200.000           |  |  |  |  |
|                          | Nominal Concen  | Nominal Concentration Range (ng/mL) |                          |                   |  |  |  |  |
|                          | (2,720.000-     | (1,700.000-                         | (510.000-690.000)        | (160.000-240.000) |  |  |  |  |
|                          | 3,680.000)      | 2,300.000)                          | (210,000 0,000)          | (100.000 210.000) |  |  |  |  |
|                          |                 | entration (ng/mL)                   |                          | <u> </u>          |  |  |  |  |
| Different Column         | 3199.00         | 1968.00                             | 592.00                   | 199.00            |  |  |  |  |
| Different Column         | 3151.00         | 2025.00                             | 601.00                   | 201.00            |  |  |  |  |
|                          | 3191.00         | 1915.00                             | 595.00                   | 193.00            |  |  |  |  |
|                          | 3209.00         | 1968.00                             | 618.00                   | 191.00            |  |  |  |  |
|                          | 3221.00         | 1989.00                             | 619.00                   | 221.00            |  |  |  |  |
|                          | 3211.00         | 1985.00                             | 609.00                   | 197.00            |  |  |  |  |
| n                        | 6               | 6                                   | 6                        | 6                 |  |  |  |  |
| Mean                     | 3197.0000       | 1975.0000                           | 605.6667                 | 200.3333          |  |  |  |  |
| SD                       | 24.78709        | 36.03887                            | 11.51810                 | 10.78270          |  |  |  |  |
| % CV                     | 0.78            | 1.82                                | 1.90                     | 5.38              |  |  |  |  |
| % Mean Accuracy          | 99.91           | 98.75                               | 100.94                   | 100.17            |  |  |  |  |
| Different Analyst        | 3188.00         | 2065.00                             | 591.00                   | 198.00            |  |  |  |  |
| Different Amaryst        | 3114.00         | 1951.00                             | 599.00                   | 218.00            |  |  |  |  |
|                          | 3268.00         | 1978.00                             | 608.00                   | 196.00            |  |  |  |  |
|                          | 3211.00         | 2011.00                             | 601.00                   | 204.00            |  |  |  |  |
|                          | 3232.00         | 2026.00                             | 615.00                   | 192.00            |  |  |  |  |
|                          | 3189.00         | 1971.00                             | 617.00                   | 198.00            |  |  |  |  |
| n                        | 6               | 17/1.00                             | 6                        | 6                 |  |  |  |  |
| Mean                     | 3200.3333       | 2000.3333                           | 605.1667                 | 201.0000          |  |  |  |  |
| SD                       | 51.82535        | 41.82663                            | 10.00833                 | 9.18695           |  |  |  |  |
| % CV                     | 1.62            | 2.09                                | 1.65                     | 4.57              |  |  |  |  |
| % Mean Accuracy          | 100.01          | 100.02                              | 100.86                   | 100.50            |  |  |  |  |
| 76 Wiean Accuracy        | HQC             | MQC1                                | LQC                      | LLOQ QC           |  |  |  |  |
|                          | Nominal Concent |                                     | LQC                      | LLOQ QC           |  |  |  |  |
|                          | 4800.000        | 3000.000                            | 600.000                  | 300.000           |  |  |  |  |
|                          |                 |                                     |                          | 300.000           |  |  |  |  |
|                          |                 | tration Range (ng/mI                | <u>′</u>                 |                   |  |  |  |  |
|                          | (4,080.000-     | (2,550.000-                         | (510.000-690.000)        | (240.000-360.000) |  |  |  |  |
|                          | 5,520.000)      | 3,450.000)                          |                          |                   |  |  |  |  |
|                          |                 | entration (ng/mL)                   |                          | 1                 |  |  |  |  |
| Different Column         | 4795.000        | 2995.000                            | 595.000                  | 289.000           |  |  |  |  |
|                          | 4800.000        | 2889.000                            | 586.000                  | 299.000           |  |  |  |  |
|                          | 4770.000        | 3000.000                            | 595.000                  | 300.000           |  |  |  |  |
|                          | 4885.000        | 3109.000                            | 605.000                  | 302.000           |  |  |  |  |
|                          | 4798.000        | 2997.000                            | 601.000                  | 292.000           |  |  |  |  |
|                          | 4810.000        | 2920.000                            | 610.000                  | 299.000           |  |  |  |  |
| n                        | 6               | 6                                   | 6                        | 6                 |  |  |  |  |
| Mean                     | 4809.6667       | 2985.0000                           | 598.6667                 | 296.8333          |  |  |  |  |
| SD                       | 39.22584        | 76.53235                            | 8.50098                  | 5.11534           |  |  |  |  |
| % CV                     | 0.82            | 2.56                                | 1.42                     | 1.72              |  |  |  |  |
| % Mean Accuracy          | 100.20          | 99.50                               | 99.78                    | 98.94             |  |  |  |  |
| Different Analyst        | 4820.000        | 2988.000                            | 597.000                  | 288.000           |  |  |  |  |

|                 | 4787.000  | 2992.000  | 589.000  | 291.000  |
|-----------------|-----------|-----------|----------|----------|
|                 | 4777.000  | 2887.000  | 590.000  | 298.000  |
|                 | 4808.000  | 3085.000  | 610.000  | 310.000  |
|                 | 4775.000  | 3100.000  | 620.000  | 302.000  |
|                 | 4790.000  | 3108.000  | 590.000  | 308.000  |
| n               | 6         | 6         | 6        | 6        |
| Mean            | 4792.8333 | 3026.6667 | 599.3333 | 299.5000 |
| SD              | 17.76982  | 86.71716  | 12.86338 | 8.89382  |
| % CV            | 0.37      | 2.87      | 2.15     | 2.97     |
| % Mean Accuracy | 99.85     | 100.89    | 99.89    | 99.83    |

**Discussion:**- The intraday and inter day accuracy and precision was assessed by analysing six replicates at five different QC levels like LLOQ, LQC, MQC and HQC. Accuracy and precision method performance was evaluated by determined by six replicate analyses for Sacubitril and Valsartan at four concentration levels (LLOQ), (LQC), (MQC) and HQC The intra-day and inter day accuracy of plasma samples were assessed and excellent mean % accuracy was obtained with range varied from 99.96-100.35%, and 98.99%-99.93 % for intraday and 99.06%-100.02 and 98.91%-100.24 for inter day respectively. The precision (%CV) of the analytes and plasma samples were calculated and found to be 0.38-11.54% and 0.76%-13.49% for intraday and 0.66%-14.23% and 0.77 %-13.16% for inter day respectively.

#### Recovery of Sacubitril and Valsartan-

Table 16: Recovery of Sacubitril and Valsartan

| Recovery - Analyte for     | r Sacubitril             |                       |                          |                       |                          |                    |
|----------------------------|--------------------------|-----------------------|--------------------------|-----------------------|--------------------------|--------------------|
| S. No.                     | HQC                      |                       | MQC1                     |                       | LQC                      |                    |
|                            | Un extracted<br>Response | Extracted<br>Response | Un extracted<br>Response | Extracted<br>Response | Un extracted<br>Response | Extracted Response |
| 1                          | 18809                    | 18237                 | 11894                    | 11482                 | 1792                     | 1740               |
| 2                          | 18503                    | 18051                 | 11584                    | 11470                 | 1798                     | 1760               |
| 3                          | 18432                    | 18650                 | 11697                    | 11499                 | 1774                     | 1756               |
| 4                          | 18537                    | 18121                 | 11688                    | 11475                 | 1748                     | 1750               |
| 5                          | 18559                    | 18331                 | 11784                    | 11486                 | 1745                     | 1749               |
| 6                          | 18624                    | 18237                 | 11698                    | 11466                 | 1801                     | 1753               |
| n                          | 6                        | 6                     | 6                        | 6                     | 6                        | 6                  |
| Mean                       | 18577                    | 18271                 | 11724                    | 11480                 | 1776                     | 1751               |
| SD                         | 129.97                   | 209.98                | 104.69                   | 12.01                 | 24.95                    | 6.86               |
| % CV                       | 0.70                     | 1.15                  | 0.89                     | 0.10                  | 1.40                     | 0.39               |
| % Mean Recovery            | 98.35                    | •                     | 97.91                    | 97.91                 |                          | •                  |
| Overall % Mean<br>Recovery | 98.286                   |                       | •                        |                       | ·                        |                    |
| Overall SD                 | 0.3437                   |                       |                          |                       |                          |                    |

| Recovery – Analyte for     | valsartan    |           |              |           |              |           |
|----------------------------|--------------|-----------|--------------|-----------|--------------|-----------|
| S. No.                     | HQC          |           | MQC1         |           | LQC          |           |
|                            | Un extracted | Extracted | Un extracted | Extracted | Un extracted | Extracted |
|                            | Response     | Response  | Response     | Response  | Response     | Response  |
| 1                          | 55423        | 54832     | 35050        | 34273     | 5280         | 5209      |
| 2                          | 55848        | 54453     | 35195        | 34366     | 5359         | 5211      |
| 3                          | 56561        | 55036     | 35075        | 34123     | 5269         | 5203      |
| 4                          | 55417        | 53821     | 34701        | 34247     | 5282         | 5210      |
| 5                          | 55738        | 54117     | 35300        | 34911     | 5275         | 5209      |
| 6                          | 55866        | 54353     | 34909        | 34688     | 5262         | 5215      |
| n                          | 6            | 6         | 6            | 6         | 6            | 6         |
| Mean                       | 55809        | 54435     | 35038        | 34435     | 5288         | 5210      |
| SD                         | 419.04       | 448.10    | 212.14       | 301.42    | 35.63        | 3.89      |
| % CV                       | 0.75         | 0.82      | 0.61         | 0.88      | 0.67         | 0.07      |
| % Mean Recovery            | 97.54        |           | 98.28        |           | 98.52        |           |
| Overall % Mean<br>Recovery | 98.112       |           |              |           |              |           |
| Overall SD                 | 0.5104       |           |              |           |              |           |
|                            |              |           |              |           |              |           |
| Overall % CV               | 0.52         |           |              |           |              |           |

#### Recovery - Internal standard

**Table 17: Recovery of Emtricitabine (IS)** 

| Recovery - Internal standard for Sacu | ıbitril                 |                      |
|---------------------------------------|-------------------------|----------------------|
| S.No.                                 | Un extracted Area Ratio | Extracted Area Ratio |
| 1                                     | 98480                   | 97532                |
| 2                                     | 98693                   | 97585                |
| 3                                     | 98662                   | 97638                |
| 4                                     | 98723                   | 97480                |
| 5                                     | 98520                   | 97570                |
| 6                                     | 98282                   | 97630                |
| n                                     | 6                       | 6                    |
| Mean                                  | 98560.0                 | 97572.5              |
| SD                                    | 167.30                  | 59.93                |
| % CV                                  | 0.17                    | 0.06                 |
| % Mean Recovery                       | 99.00                   |                      |
| Recovery - Internal standard for Vals | artan                   |                      |
| S.No.                                 | Un extracted Area Ratio | Extracted Area Ratio |
| 1                                     | 98380                   | 97532                |
| 2                                     | 98693                   | 97585                |
| 3                                     | 98682                   | 97638                |
| 4                                     | 98763                   | 97480                |
| 5                                     | 98510                   | 97570                |
| 6                                     | 98252                   | 97630                |
| n                                     | 6                       | 6                    |
| Mean                                  | 98546.7                 | 97572.5              |
| SD                                    | 201.24                  | 59.93                |
| % CV                                  | 0.20                    | 0.06                 |
| % Mean Recovery                       | 99.01                   |                      |

**Discussion:** Recovery was determined by measuring the peak areas obtained from prepared plasma samples with those extracted blank plasma spiked with standards containing the same area with known amount of Sacubitril and Valsartan

#### **Rugged Linearity:**

Table 18: Rugged Linearity of Sacubitril and Valsartan

| Ruggedness Linearity for Sacubitril  STD1 STD2 STD3 STD4 STD5 STD6 STD7 STD  Notice 1 Content to the Content to | 0      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0      |
| New York Consequent (new York (new York))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | o      |
| Nominal Concentration (ng/mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |
| 200.000 400.000 600.000 1600.000 2000.000 2400.000 3200.000 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .000   |
| Nominal Concentration Range (ng/mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000- |
| <b>240.000)</b>   <b>460.000)</b>   <b>690.000)</b>   <b>1,840.000)</b>   <b>2,300.000)</b>   <b>2,760.000)</b>   <b>3,680.000)</b>   <b>4,600</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000) |
| Calculated Concentration (ng/mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| Different                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |
| Column 0.035 0.075 595.000 1595.000 1998.000 2388.000 3197.000 4008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .000   |
| Different                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |
| Analyst 0.038 0.073 601.000 6011.000 2011.000 2418.000 3299.000 4026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .000   |
| Ruggedness Linearity fro Valsartan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| STD1 STD2 STD3 STD4 STD5 STD6 STD7 STD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8      |
| Nominal Concentration (ng/mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |
| 300.000 600.000 900.000 2400.000 3000.000 3600.000 4800.000 6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .000   |
| Nominal Concentration Range (ng/mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000- |
| 360.000) 690.000) 1,035.000) 2,760.000) 3,450.000) 4,140.000) 5,520.000) 6,900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000) |
| Calculated Concentration (ng/mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| Different                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |
| Column 299.000 599.000 1089.000 2399.000 2998.000 3699.000 4820.000 6002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .000   |
| Different                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |
| Analyst 301.000 606.000 990.000 2482.000 3013.000 3709.000 4885.000 6201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .000   |

**Discussion**: Linearity ruggedness is a measure for the susceptibility of a method to small changes that might occur during routine analysis, The calibration range is obtained by injecting 6 concentrations(0.15 ng/ml-6ng/ml) of calibration standards not including blank and zero samples and establishing, The calibration curves were appeared linear and the coefficient of correlation was found to be 0.999 for Sacubitril and Valsartan.

### Reinjection Reproducibility

mty Гable 19 : Reinjection Reproducibility of Sacubitril and Valsartan

|                                  | Table                               | 19 : Reinjection                                    | Rep                      | roducibility of Sac       | <u>cub</u>        | itril and Valsartan |                       |  |
|----------------------------------|-------------------------------------|-----------------------------------------------------|--------------------------|---------------------------|-------------------|---------------------|-----------------------|--|
|                                  | HQC                                 |                                                     |                          | MQC1                      |                   | LQC                 | LLOQ QC               |  |
|                                  |                                     | Nominal Concentration (ng/mL)                       |                          |                           |                   |                     |                       |  |
|                                  |                                     | 3200.000                                            | 2000.000 600.000         |                           | 200.000           |                     |                       |  |
|                                  | Nominal Concentration Range (ng/mL) |                                                     |                          |                           |                   |                     |                       |  |
|                                  |                                     | (2,720.000-<br>3,680.000) (1,700.000-<br>2,300.000) |                          | (1,700.000-<br>2,300.000) | (510.000-690.000) |                     | (160.000-240.000)     |  |
|                                  |                                     | Calculated Concentration (ng/mL)                    |                          |                           |                   |                     |                       |  |
| Different Column                 |                                     | 3199.00                                             |                          | 1968.00 592.00            |                   | 592.00              | 199.00                |  |
|                                  |                                     | 3151.00                                             |                          | 2025.00                   |                   |                     | 201.00                |  |
|                                  |                                     | 3191.00                                             |                          | 1915.00                   |                   | 595.00              | 193.00                |  |
|                                  |                                     | 3209.00                                             |                          | 1968.00                   |                   | 618.00              | 191.00                |  |
|                                  |                                     | 3221.00                                             |                          | 1989.00                   |                   | 619.00              | 221.00                |  |
|                                  |                                     | 3211.00                                             |                          | 1985.00                   |                   | 609.00              | 197.00                |  |
| n                                |                                     | 6                                                   |                          | 6                         |                   | 6                   | 6                     |  |
| Mean                             |                                     | 3197.0000                                           |                          | 1975.0000                 |                   | 605.6667            | 200.3333              |  |
| SD                               |                                     | 24.78709                                            |                          | 36.03887                  |                   | 11.51810            | 10.78270              |  |
| % CV                             |                                     | 0.78                                                |                          | 1.82                      |                   | 1.90                | 5.38                  |  |
| % Mean Accuracy                  |                                     | 99.91                                               |                          | 98.75                     |                   | 100.94              | 100.17                |  |
| Different Analyst                |                                     | 3188.00                                             |                          | 2065.00                   |                   | 591.00              | 198.00                |  |
| •                                |                                     | 3114.00                                             |                          | 1951.00                   | 599.00            |                     | 218.00                |  |
|                                  |                                     | 3268.00                                             |                          | 1978.00                   |                   | 608.00              | 196.00                |  |
|                                  |                                     | 3211.00                                             |                          |                           | 601.00            |                     | 204.00                |  |
|                                  |                                     | 3232.00                                             |                          | 2026.00                   |                   | 615.00              | 192.00                |  |
|                                  |                                     | 3189.00                                             |                          | 1971.00 617.00            |                   | 617.00              | 198.00                |  |
| n                                |                                     | 6                                                   | 6                        |                           | 6                 |                     | 6                     |  |
| Mean                             |                                     | 3200.3333                                           |                          | 2000.3333                 |                   | 605.1667            | 201.0000              |  |
| SD                               |                                     | 51.82535                                            |                          | 41.82663                  |                   | 10.00833            | 9.18695               |  |
| % CV                             |                                     | 1.62                                                |                          | 2.09                      |                   | 1.65                | 4.57                  |  |
| % Mean Accuracy                  |                                     | 100.01 100.02                                       |                          |                           | 100.86            | 100.50              |                       |  |
| Reinjection Reprod               | ucibility                           |                                                     |                          |                           |                   |                     |                       |  |
|                                  | HQC                                 |                                                     | MQ                       | C1                        | L                 | QC                  | LLOQ QC               |  |
|                                  | Nominal                             | Concentration (r                                    | ıg/mL                    | u)                        |                   |                     |                       |  |
|                                  | 4800.000                            | 1                                                   | 3000                     | 0.000                     | 6                 | 00.000              | 300.000               |  |
|                                  | Nominal                             | al Concentration Range (ng/mL)                      |                          |                           |                   |                     |                       |  |
|                                  | (4,080.00                           | 00-5,520.000)                                       | 0) (2,550.000-3,450.000) |                           | (510.000-690.000) |                     | (240.000-<br>360.000) |  |
|                                  | Calculat                            | ed Concentration                                    | (ng/n                    | nL)                       |                   |                     | 1 //                  |  |
| P&A01                            | 4865.000                            |                                                     | 2965.000                 |                           | 586.000           |                     | 288.000               |  |
|                                  | 4884.000                            |                                                     |                          | 950.000                   |                   | 72.000              | 298.000               |  |
|                                  | 4921.000                            |                                                     |                          | 89.000                    |                   | 20.000              | 309.000               |  |
| 4879.000<br>4886.000<br>4908.000 |                                     |                                                     |                          | 9.000                     | _                 | 84.000              | 312.000               |  |
|                                  |                                     |                                                     |                          | 9.000                     | _                 | 10.000              | 302.000               |  |
|                                  |                                     |                                                     |                          | 9.000                     | _                 | 25.000              | 299.000               |  |
| n                                | 6                                   |                                                     | 6                        |                           | 6                 |                     | 6                     |  |
| Mean                             | 4890.5000                           |                                                     | 2970.1667                |                           | 616.1667          |                     | 301.3333              |  |
| SD                               | 20.40343                            |                                                     | 47.47385                 |                           | 32.22680          |                     | 8.57127               |  |
| % CV                             | 0.42                                |                                                     | 1.60                     |                           | _                 | .23                 | 2.84                  |  |
| % Mean                           | 101.89                              |                                                     |                          | 99.01                     |                   | 02.69               | 100.44                |  |
| Accuracy                         | 1                                   |                                                     | 1                        |                           |                   |                     |                       |  |

#### **Stabilities**

#### Long term stock solution stability

Table no 20: stability of Sacubitril and Valsartan (zero days)

| Table no 20: stability of Sacubitril and Valsartan (zero days) |                                     |                   |  |  |  |
|----------------------------------------------------------------|-------------------------------------|-------------------|--|--|--|
| S. No.                                                         | HQC                                 | LQC               |  |  |  |
|                                                                | Nominal Concentration (ng/mL)       |                   |  |  |  |
|                                                                | 3200.000                            | 600.000           |  |  |  |
|                                                                | Nominal Concentration Range (ng/n   | mL)               |  |  |  |
|                                                                | (2,720.000-3,680.000)               | (510.000-690.000) |  |  |  |
|                                                                | Calculated Concentration (ng/mL)    |                   |  |  |  |
| 1                                                              | 3169.000                            | 598.000           |  |  |  |
| 2                                                              | 3189.000                            | 609.000           |  |  |  |
| 3                                                              | 3211.000                            | 592.000           |  |  |  |
| 4                                                              | 3222.000                            | 601.000           |  |  |  |
| 5                                                              | 3191.000                            | 612.000           |  |  |  |
| 6                                                              | 3181.000                            | 603.000           |  |  |  |
| n                                                              | 6                                   | 6                 |  |  |  |
| Mean                                                           | 3193.8333                           | 602.5000          |  |  |  |
| SD                                                             | 19.49786                            | 7.28697           |  |  |  |
| % CV                                                           | 0.61                                | 1.21              |  |  |  |
| % Mean Accuracy                                                | 99.81                               | 100.42            |  |  |  |
| S. No.                                                         | HQC                                 | LQC               |  |  |  |
|                                                                | Nominal Concentration (ng/mL)       |                   |  |  |  |
|                                                                | 4800.000                            | 600.000           |  |  |  |
|                                                                | Nominal Concentration Range (ng/mL) |                   |  |  |  |
|                                                                | (4,080.000-5,520.000)               | (510.000-690.000) |  |  |  |
|                                                                | Calculated Concentration (ng/mL)    |                   |  |  |  |
| 1                                                              | 4965.000                            | 589.000           |  |  |  |
| 2                                                              | 4889.000                            | 598.000           |  |  |  |
| 3                                                              | 4895.000                            | 610.000           |  |  |  |
| 4                                                              | 4920.000                            | 599.000           |  |  |  |
| 5                                                              | 4810.000                            | 625.000           |  |  |  |
| 6                                                              | 4871.000                            | 620.000           |  |  |  |
| n                                                              | 6                                   | 6                 |  |  |  |
| Mean                                                           | 4891.6667                           | 606.8333          |  |  |  |
| SD                                                             | 51.56614                            | 13.93437          |  |  |  |
| % CV                                                           | 1.05                                | 2.30              |  |  |  |
| % Mean Accuracy                                                | 101.91                              | 101.14            |  |  |  |

#### Matrix samples stability at -28±5 °C for 37 days

Table 21: Matrix samples stability at -28±5 °C for 37 days

|                   |                                     | ix samples stability at | -20=3 C 101 57 days       |                   |  |  |
|-------------------|-------------------------------------|-------------------------|---------------------------|-------------------|--|--|
| Long Term Analyte | <u>e Stability in Matrix for S</u>  | acubitril               |                           |                   |  |  |
| S. No.            | HQC                                 |                         | LQC                       |                   |  |  |
|                   | Nominal Concentration (ng/mL)       |                         |                           |                   |  |  |
|                   | 3200.000                            | 3200.000                | 600.000                   | 600.000           |  |  |
|                   | Nominal Concentration Range (ng/mL) |                         |                           |                   |  |  |
|                   | (2,720.000-3,680.000)               | (2,720.000-3,680.000)   | (510.000-690.000)         | (510.000-690.000) |  |  |
|                   | Calculated Concentration (ng/mL)    |                         |                           |                   |  |  |
|                   | <b>Comparison Samples</b>           | Stability Samples       | <b>Comparison Samples</b> | Stability Samples |  |  |
| 1                 | 3213.00                             | 3189.00                 | 598.000                   | 592.000           |  |  |
| 2                 | 3212.00                             | 3198.00                 | 605.000                   | 585.000           |  |  |
| 3                 | 3188.00                             | 3168.00                 | 589.000                   | 595.000           |  |  |
| 4                 | 3178.00                             | 3178.00                 | 601.000                   | 601.000           |  |  |
| 5                 | 3206.00                             | 3165.00                 | 595.000                   | 605.000           |  |  |
| 6                 | 3219.00                             | 3025.00                 | 601.000                   | 596.000           |  |  |
| n                 | 6                                   | 6                       | 6                         | 6                 |  |  |
| Mean              | 3202.6667                           | 3153.8333               | 598.1667                  | 595.6667          |  |  |
| SD                | 16.09555                            | 64.33480                | 5.60060                   | 6.97615           |  |  |
| % CV              | 0.50                                | 2.04                    | 0.94                      | 1.17              |  |  |
| %Mean             | 100.08                              | 98.56                   | 99.69                     | 99.28             |  |  |
| Accuracy          |                                     |                         |                           |                   |  |  |
| % Mean Stability  | 98.48                               |                         | 99.58                     |                   |  |  |

| Long Term Analyt | e Stability in Matrix for V         | alsartan              |                           |                   |  |  |
|------------------|-------------------------------------|-----------------------|---------------------------|-------------------|--|--|
| S. No.           | HQC                                 |                       | LQC                       |                   |  |  |
|                  | Nominal Concentration (ng/mL)       |                       |                           |                   |  |  |
|                  | 4800.000                            | 4800.000              | 600.000                   | 600.000           |  |  |
|                  | Nominal Concentration Range (ng/mL) |                       |                           |                   |  |  |
|                  | (4,080.000-5,520.000)               | (4,080.000-5,520.000) | (510.000-690.000)         | (510.000-690.000) |  |  |
|                  | Calculated Concentration (ng/mL)    |                       |                           |                   |  |  |
|                  | <b>Comparison Samples</b>           | Stability Samples     | <b>Comparison Samples</b> | Stability Samples |  |  |
| 1                | 4825.000                            | 4822.000              | 605.000                   | 599.000           |  |  |
| 2                | 4801.000                            | 4768.000              | 596.000                   | 609.000           |  |  |
| 3                | 4795.000                            | 4798.000              | 608.000                   | 600.000           |  |  |
| 4                | 4859.000                            | 4778.000              | 610.000                   | 598.000           |  |  |
| 5                | 4810.000                            | 4789.000              | 600.000                   | 601.000           |  |  |
| 6                | 4877.000                            | 4792.000              | 609.000                   | 603.000           |  |  |
| n                | 6                                   | 6                     | 6                         | 6                 |  |  |
| Mean             | 4827.8333                           | 4791.1667             | 604.6667                  | 601.6667          |  |  |
| SD               | 33.20492                            | 18.50856              | 5.57375                   | 3.98330           |  |  |
| % CV             | 0.69                                | 0.39                  | 0.92                      | 0.66              |  |  |
| %Mean            | 100.58                              | 99.82                 | 100.78                    | 100.28            |  |  |
| Accuracy         |                                     |                       |                           |                   |  |  |
| % Mean Stability | 99.24                               |                       | 99.50                     |                   |  |  |

| Long Term Analyta | Stability in Matrix for Sacu                                        | ix samples stability at - | 30-2 3 101 <b>2</b> 1 days |                   |  |  |  |
|-------------------|---------------------------------------------------------------------|---------------------------|----------------------------|-------------------|--|--|--|
| S. No.            | HOC                                                                 | 1011111                   | LOC                        |                   |  |  |  |
| S. 1.0.           | Nominal Concentration                                               | (ng/mL)                   | EQU                        |                   |  |  |  |
|                   | 4800.000                                                            | 4800.000                  | 600.000                    | 600.000           |  |  |  |
|                   | Nominal Concentration Range (ng/mL)                                 |                           |                            |                   |  |  |  |
|                   | (4,080.000-5,520.000)                                               | (4,080.000-5,520.000)     | (510.000-690.000)          | (510.000-690.000) |  |  |  |
|                   | Calculated Concentration (ng/mL)                                    |                           |                            |                   |  |  |  |
|                   | Comparison Samples Stability Samples Comparison Samples Stability S |                           |                            |                   |  |  |  |
| 1                 | 4805.000                                                            | 4725.000                  | 616.000                    | 589.000           |  |  |  |
| 2                 | 4796.000                                                            | 4791.000                  | 605.000                    | 601.000           |  |  |  |
| 3                 | 4820.000                                                            | 4805.000                  | 592.000                    | 598.000           |  |  |  |
| 4                 | 4871.000                                                            | 4801.000                  | 620.000                    | 595.000           |  |  |  |
| 5                 | 4816.000                                                            | 4799.000                  | 609.000                    | 598.000           |  |  |  |
| 6                 | 4821.000                                                            | 4801.000                  | 615.000                    | 601.000           |  |  |  |
| n                 | 6                                                                   | 6                         | 6                          | 6                 |  |  |  |
| Mean              | 4821.5000                                                           | 4787.0000                 | 609.5000                   | 597.0000          |  |  |  |
| SD                | 26.09789                                                            | 30.72458                  | 10.09455                   | 4.51664           |  |  |  |
| % CV              | 0.54                                                                | 0.64                      | 1.66                       | 0.76              |  |  |  |
| %Mean Accuracy    | 100.45                                                              | 99.73                     | 101.58                     | 99.50             |  |  |  |
| % Mean Stability  | 99.28                                                               |                           | 97.95                      | 1                 |  |  |  |
|                   | Stability in Matrix for Vals                                        | sartan                    |                            |                   |  |  |  |
| S. No.            | HQC LQC                                                             |                           |                            |                   |  |  |  |
|                   | Nominal Concentration (ng/mL)                                       |                           |                            |                   |  |  |  |
|                   | 3200.000                                                            | 3200.000                  | 600.000                    | 600.000           |  |  |  |
|                   | Nominal Concentration Range (ng/mL)                                 |                           |                            |                   |  |  |  |
|                   | (2,720.000-3,680.000)                                               | (2,720.000-3,680.000)     | (510.000-690.000)          | (510.000-690.000) |  |  |  |
|                   | Calculated Concentration (ng/mL)                                    |                           |                            |                   |  |  |  |
|                   | Comparison Samples                                                  | Stability Samples         | Comparison Samples         | Stability Samples |  |  |  |
| 1                 | 3162.000                                                            | 3198.000                  | 595.000                    | 588.000           |  |  |  |
| 2                 | 3271.000                                                            | 3156.000                  | 602.000                    | 591.000           |  |  |  |
| 3                 | 3225.000                                                            | 3185.000                  | 598.000                    | 595.000           |  |  |  |
| 4                 | 3211.000                                                            | 3198.000                  | 603.000                    | 598.000           |  |  |  |
| 5                 | 3182.000                                                            | 3185.000                  | 596.000                    | 601.000           |  |  |  |
| 6                 | 3177.000                                                            | 3125.000                  | 601.000                    | 593.000           |  |  |  |
| n                 | 6                                                                   | 6                         | 6                          | 6                 |  |  |  |
| Mean              | 3204.6667                                                           | 3174.5000                 | 599.1667                   | 594.3333          |  |  |  |
| SD                | 39.88316                                                            | 28.69669                  | 3.31160                    | 4.71876           |  |  |  |
| % CV              | 1.24                                                                | 0.90                      | 0.55                       | 0.79              |  |  |  |
| %Mean Accuracy    | 100.15                                                              | 99.20                     | 99.86                      | 99.06             |  |  |  |
| % Mean Stability  | 99.06                                                               | / //                      | 99.19                      |                   |  |  |  |

#### **Summary**

| VALIDATION RESULTS OF Sacubitril and Valsartan |                                                                 |                   |                     |           |  |  |
|------------------------------------------------|-----------------------------------------------------------------|-------------------|---------------------|-----------|--|--|
| Analyte Parameters                             | Sacubitril and Valsartan                                        | Internal standard | Acceptance Criteria |           |  |  |
|                                                | %Nominal precision                                              |                   | %                   | Precision |  |  |
| Biological Matrix                              | Rabbit Plasma                                                   | Rabbit Plasma     | N/AP                | N/AP      |  |  |
| Analytical Range                               | 0.4ng/ml-8μg/ml of Valsartan & 0.2 μg/ml -4 μg/ml of Sacubitril | N/AP              | N/AP                | N/AP      |  |  |
| Minimum Quantifiable                           | Minimum Quantifiable 8 μg/ml of Valsartan 4 μg/ml of Sacubitril |                   | N/AP                | ≤ 20%     |  |  |
| Matrix Effect LQC HQC                          | 99.51%& 101.81% of Sacubitril &                                 | N/AP              | 85% -               | ≤ 15%     |  |  |
|                                                | 100.71%& 101.46% of Valsartan                                   |                   | 115%                |           |  |  |
| Coefficient of correlation                     | 0.999                                                           | N/AP              | $r2 \ge 0.98$       |           |  |  |
| Accuracy and Precision                         | 100.0%                                                          |                   | 80% -               |           |  |  |
| for Sensitivity                                |                                                                 | N/AP              | 120%                | ≤ 20%     |  |  |
|                                                | 101.52% ,99.42% ,99.93 % of Valsartan &                         |                   | 85%-                | ≤15%%     |  |  |
| Within Batch Accuracy                          | 100.71%, 101.48%, 100.18 % of Sacubitril                        | N/AP              | 115% (L, M1,        | (L, M1,   |  |  |
| and                                            |                                                                 |                   | M2, H)80%-          | M2,H)     |  |  |
| Precision                                      |                                                                 |                   | 120%                | ≤20%(LL   |  |  |

#### Conclusion

A simple, accurate, precise method was developed for the estimation of the Sacubitril and Valsartan in Rabbit plasma using the Emtricitabine as internal standard. Retention time of Sacubitril and Valsartan was found to be 1.196min (IS) and 1.528min of Sacubitril and 1.799 min of Valsartan. Which reach the level of both drugs possibly found in Rabbit plasma. Further, the reported method was validated as per the ICH guidelines and found to be well within the acceptable range. The proposed method is simple, rapid, accurate, precise, and appropriate for pharmacokinetic and therapeutic drug monitoring in the clinical laboratories.

#### **BIBILOGRAPHY**

- 1. Lalit v sonawane, bhagwat n poul, sharad v usnale, pradeepkumar v waghmare and laxman h surwase, Bioanalytical Method Validation and Its Pharmaceutical Application, Pharmaceutical Analytical Acta,2014 vol.5,pg no:1-7.
- Sachin, L.Darkunde, Rupali, N. Borhade, Bioanalytical Method Validation: A Quality Assurance Auditor View Point asian journal of pharmaceutical technology and innovation.2017.Vol.5. pgno:59-60
- 3. Tijare lk, rangari nt, mahajanun, A review on bioanalytical method development and validation, asian journal of pharmaceutical clinical research.2016 vol.9.pgno:1-5
- Kirthi R. Shanmugam. A review on bioanalytical method development and validation by RP – HPLC. Journal of Global Trends in Pharmaceutical Sciences. 2014;5(4): 2265 - 2271
- Kirthi R. Shanmugam. A review on bioanalytical method development and validation by RP – HPLC. Journal of Global Trends in Pharmaceutical Sciences. 2014;5(4): 2265 - 2271
- Richard R. Burgess. Protein precipitation techniques. Methods in Enzymology.2009; 463:331-341
- 7. Method development and validation skills and tricks .2019.pgno:3
- 8. Pushpa Latha E, and Sailaja B, Bioanalytical Method Development and Validation by journal of

- medical and pharmaceutical innovation.2015 vol.1.pgno:1-9
- Kirthi1, R. Shanmugam, M. Shanti Prathyusha, D. Jamal Basha, a review on bioanalytical method development and validation by rp Journal of Global Trends in Pharmaceutical Sciences.2014 vol.5.
- 10. Gurdeep R.Chatwal , Sham K .Anand, Instrumental Methods of Chemical Analysis , Pg 2.566-2.638 (2007)
- 11. Nasal.A, Siluk.D, and Kaliszan.R. Chromatographic Retention Parameters in Medicinal Chemistry and Pharmacology, Pubmed, Vol.10, Issue 5 Pg no-381-426, March (2003)
- 12. Ashok Kumar, Lalith Kishore, navpreet Kaur, Anroop Nair. Method Development and Validation for Pharmaceutical Analysis. International Pharmaceutica Sciencia, Vol 2, Issue 3, Jul-Sep (2012)
- Kaushal.C, Srivatsava.B, A Process of Method Development: A Chromatographic Approach. J Chem Pharm Res, Vol.2, Issue 2, 519-545, (2010)
- 14. Green JM. A Practicle guide to analytical method validation, Anal Chem (1996) 305A-309A
- 15. ICH, Validation of analytical procedures: Text and Methodology. International Conference on Harmonization, IFPMA, Geneva, (1996)
- 16. IUPAC. Compendium of Chemical Terminology, 2nd edn. (The Gold Bo). PAC69, 1137 (1997). Glossary of terms used in computational drug design (IUPAC Recommendations.
- 17. K. D. Tripathi, Essentials of Medical Pharmacology, 6th Edition, Jaypee brother's medical publishers (P) LTD, p-254-255.
- 18. Indian Pharmacopoeia, Indian Pharmacopoeial Commission, Controller of Publication, Government of India, Ministry of health and Family Welfare, Ghaziabad, India, 2 (2010) 1657-1658.
- 19. British Pharmacopoeia, The British Pharmacopoeial Commission, the stationary office, UK, London, 1408-1409 2 (2011).
- 20. https://www.drugbank.ca/drugs/DB09078
- 21. https://www.scbt.com/scbt/product/Sacubitril and Valsartan-417716-92-8