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Abstract 

In this study, we have explored recent advancements in applying deep learning (DL) techniques within the agricultural 

sector. By reviewing studies published from 2015 to 2022, the research sheds light on the diverse applications of DL in 

agriculture. These applications encompass fruit counting, water management, crop, and soil management, weed detection, 

seed classification, yield prediction, disease identification, and harvesting. The study underscores the potential of DL in 

revolutionising agriculture, leveraging its ability to learn from extensive datasets. However, challenges such as data 

compilation, computational costs, and the scarcity of DL experts exist. We aim to mitigate these challenges by presenting 

this survey as a valuable resource. This resource aims to guide future research and development endeavours focused on 

integrating DL techniques in agricultural practices. 
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1. Introduction 

In today's globalized world, the significance of 

agriculture and its contributions cannot be overstated. 

Throughout the years, agriculture has faced numerous 

difficulties in meeting the escalating demands of the 

world's population, which has doubled over the past five 

decades. Various projections indicate unprecedented 

growth, with the global population expected to reach 

approximately 9 billion by 2050 (Santos et al., 2020). 

Additionally, there is a noticeable rise in urbanization, 

accompanied by a substantial decrease in the percentage 

of retired or working individuals within the population 

https://doi.org/10.53555/AJBR.v28i1S.6701
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(Patil et al., 2016). This shift necessitates a substantial 

increase in agricultural productivity worldwide, 

requiring a robust human labour force. To tackle this 

issue, the agricultural sector implemented technological 

solutions over a century ago, including innovations like 

tractors. Today, mechanical technology has rapidly 

advanced, offering a wide array of options. 

Technologies like remote sensing (Atzberger, 2013), 

robotic platforms Santos et al., 2018), and the Internet 

of Things (IoT) (Patil et al., 2016) have become 

prevalent, especially in agriculture. This widespread 

adoption has ushered in an era of smart and efficient 

farming (Walter et al., 2017). According to Schmid 

Huber (2015), DL represents a modern approach that has 

found successful applications in various machine-

learning techniques (Schmidhuber,2015). It shares 

similarities with artificial neural networks (ANNs) but 

possesses superior learning capabilities, resulting in 

higher accuracy (Kamilaris, 2018). In recent years, DL 

technologies like generative adversarial networks 

(GANs), recurrent neural networks (RNNs), and 

convolutional neural networks (CNNs) have been 

extensively explored across different research domains, 

including agriculture. However, practitioners and 

researchers often utilize these technologies without a 

comprehensive understanding of their underlying 

mechanisms and concepts. DL encompasses several 

sub-categories of algorithms, including deep 

convolutional generative adversarial networks 

(DCGANs), very deep convolutional networks 

(VGGNets), and long short-term memory (LSTM) 

networks. Familiarity with these sub-categories is 

essential for comprehending common DL algorithms 

(Bouguettaya et al., 2022). As noted by Kamilaris and 

Prenafeta (Khan et al., 2022), DL represents a 

contemporary and potent technique for data analysis and 

image processing, displaying significant potential and 

promising results (Khan et al., 2022). Its successful 

integration into diverse domains, including agriculture, 

is notable. DL's strength lies in its ability to tackle 

complex problems swiftly and efficiently, owing to 

intricate models that facilitate massive parallelization. 

These sophisticated models, when applied in DL, have 

the potential to enhance classification accuracy and 

minimize errors in regression problems. However, this 

efficacy relies heavily on the availability of substantial 

databases capable of addressing such intricate problems. 

Its successful integration into diverse domains, 

including agriculture, is notable. 

The authors (Kashyap, 2017) emphasized the 

significance of utilizing DL with drone technology in 

agriculture, providing a convenient method for 

monitoring, assessing, and scanning crops through high-

quality, high-resolution images. This technology enables 

the recognition of advancements in fields and quality 

assessment. For instance, agricultural experts can 

determine crop readiness for harvesting by analysing 

images captured by drones. DL, in conjunction with 

machine learning (ML) techniques, aids farmers in 

understanding soil properties, facilitating timely 

farming decisions. It is also employed to manage 

nutrients and water efficiently, determining optimal 

cropping and harvesting times. This approach leads to 

higher yields, increased efficiency, and better 

projections of return on investment (ROI) for crops, 

accounting for market margins and costs (Magamadov, 

2019). DL’s efficiency surpasses traditional methods 

like support vector machines (SVMs), random forest 

(RF) algorithms, and ANNs. Various technologies 

combined with DL enhance predictive and classification 

performance in agricultural contexts. RNN and LSTM 

models, incorporating memory and time dimensions, 

predict plant and animal growth based on historical data. 

These models evaluate water requirements and crop 

yields, utilizing temporal data and memory functions 

(Jain et al., 2016). Additionally, they estimate growth 

and evaluate fruit yields or water needs using previously 

recorded data. (Ren and Kim, 2020) employed models 

to forecast phenomena and climate changes. Utilizing 

hyperspectral and infrared thermal imaging for data 

collection enables prompt disease detection in crops. 

With the exponential growth in this field, it is crucial to 

provide an updated review of recent literature focusing 

on innovative DL research techniques in agriculture. 

This study offers an overview of recent advancements 

related to DL in agriculture, specifically focusing on 

fruit counting, water management, crop, and soil 

management, weed detection, seed classification, yield 

prediction, disease detection, and harvesting. The 

adoption of technology in the agricultural sector has 

significantly transformed farming and crop cultivation. 

Notably, DL has enhanced agricultural efficiency, 

motivating researchers to explore its applications in 

farming, harvesting, and yield predictions. 

This paper is structured as follows: Section 2 outlines 

the research methodology employed in this study. In 

Section 3, a literature review is presented, which 

includes a brief historical overview of the topic. Section 

4 emphasizes the significance of DL in the agricultural 

sector. Section 5 explores DL tools suitable for model 

development, describing their usage, purpose, 

significance, and implementation within agriculture. 

Moving forward, Section 6 presents the study's results 

and engages in a discussion, drawing on insights from 

previous studies that have explored deep learning 

concepts. Finally, in Section 7, the paper concludes by 

summarising the overall findings and suggesting 

potential avenues for future research. 

 

2. Research Methodology 

The methodology employed in this study relied on 

secondary data and an extensive review of approaches 

associated with agricultural DL, encompassing areas 

like disease detection, yield prediction, and weed 

prediction. Various databases, including Research Gate, 

IEEE Explore, Springer, Elsevier, Google Scholar, 

Frontier, and Science Direct, were utilized for sourcing 

relevant literature. The study focused on research papers 

published between 2015 and early 2022, aligning with 

the period of significant advancements in DL and its 

growing application in agriculture. Data collection 

primarily centred around journal articles and conference 

papers that met specific criteria: they had to be in 

English, accessible in full, and directly relevant to the 

research objectives, particularly concerning 

development and agriculture themes. 
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3. Literature Review 

3.1 Deep Learning 

The agricultural sector confronts numerous difficulties 

due to rising demand and a diminishing workforce in 

the fields. Smart farming, in this context, emerges as a 

solution to address critical issues like food security, 

sustainability, productivity, and environmental impact 

(Santos et al., 2022). Agriculture holds immense 

significance in the global economy, ensuring food 

security for nations and serving as a cornerstone for 

international trade (Kamilaris, 2018). In today's world, 

the automation wave, powered by artificial intelligence 

(AI), has touched various aspects of our lives, from 

home appliances to transportation services. Therefore, 

it is imperative for farming practices, the backbone of 

nations, to embrace technological advancements. To 

effectively address the intricate, multivariate, and 

unpredictable challenges of agricultural ecosystems, 

continuous monitoring, measurement, and analysis of 

various physical aspects and phenomena are crucial. 

Quick understanding and responses can be achieved 

through the insightful analysis of vast amounts of 

agricultural data, facilitated by new Information and 

Communication Technologies (ICTs). This necessity 

applies to both small-scale farms and large-scale 

ecosystem monitoring efforts. The implementation of 

DL with expansive networks offers a promising avenue 

to handle these difficulties, enabling the agricultural 

sector to make informed decisions based on data-driven 

insights. 

 

DL represents a subset of machine learning focused on 

constructing neural networks that emulate the human 

brain's analytical learning process. Like the human 

brain, DL interprets data from various sources such as 

images, videos, text, and sounds. Its ongoing 

development has enabled its application in complex 

tasks like image segmentation, recognition, natural 

language processing, object detection, and image 

classification (Thai-Nghe et al., 2022). However, the 

efficacy of DL hinges on extensive datasets; the model 

learns and responds based on the information within 

these datasets. In the realm of agriculture, technological 

advancements such as image processing, the Internet of 

Things (IoT), robotics, machine learning, and computer 

vision have proven invaluable. Particularly, high-

quality image processing integrated with drone 

technology offers farmers an efficient means to monitor 

crop progress and assess readiness for harvest remotely, 

eliminating the need for extensive travel. The synergy 

of AI and drones has already demonstrated significant 

benefits. Considering these advancements, 

implementing DL in agriculture could revolutionise the 

industry (Thai-Nghe et al., 2022). Figure 2 outlines the 

numerous advantages of incorporating DL in 

agricultural practices. Given the growing global 

population, the demand for agricultural products 

continues to rise (Thai-Nghe et al., 2022). 

Implementing DL and other automated components 

holds the potential to significantly enhance production 

outcomes. It can minimize crop spoilage, decrease 

production costs, and boost income by increasing 

overall production. The integration of DL stands poised 

to revolutionize agriculture, making processes more 

efficient and ensuring higher yields in response to the 

escalating demands of our expanding population. 

Furthermore, it would enable the prediction of climate 

variations, such as impending rainstorms or cyclones, 

allowing farmers to be adequately prepared and take 

preventive measures before a potential disaster occurs. 

 

3.2 Era Preceding the Emergence of Deep Learning 

Traditional agriculture, predating scientific 

advancements in the agricultural sector, primarily relied 

on conventional methods. It involved the extensive use 

of traditional tools, organic fertilizers, indigenous 

knowledge of land use, natural resources, and cultural 

practices (Traditional Agriculture: An Efficient and 

Sustainable Farming Method. Stories.pinduoduo-

global.com. 2021). 

Described as the "primitive style" or "early style" of 

farming, traditional agriculture had significant 

environmental impacts, including soil nutrient 

depletion. Practices like slash and burn led to reduced 

soil organic matter, while deforestation, especially in 

tropical rainforests, occurred to make room for 

agricultural activities. Soil erosion, exacerbated by the 

removal of fertile topsoil by water or wind, posed 

another critical issue, as replenishing this topsoil could 

take decades (Traditional Agriculture: An Efficient and 

Sustainable Farming Method. 

Stories.pinduoduoglobal.com. 2021). Agroforestry, 

crop rotation, intercropping, and polycultures, along 

with water harvesting, represent some of the typical 

traditional farming practices. In traditional grain storage 

methods, small structures provided a moisture-proof 

environment, unlike today's large warehouses. These 

structures were cost-effective to build and maintain. 

However, during storage, various pesticides were 

employed to protect grains, leading to adverse 

environmental effects later on (Sahila and Begum, 

2021). Technological advancements and substantial 

  
Fig. 1 The approach used for conducting the research   
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investments in agricultural industries have aided in 

disease control, justifying the significant financial 

investments made. 

 

 
Fig. 2 Deep Learning Application in Agriculture 

 

4.  Deep Learning Architecture 

DL relies on several nonlinear transformations to 

capture intricate patterns in data, forming the 

fundamental basis of this approach (Dargan et al., 

2020). One of DL's key advantages is its ability to 

automatically extract features from raw data through a 

process called feature learning. This involves 

generating higher-level features from lower-level 

components (LeCun et al., 2015). In agricultural 

applications, DL networks such as RNNs and CNNs are 

commonly employed to leverage these transformative 

techniques. 

 

4.1 Convolutional Neural Networks (CNNs) 

The Convolutional Neural Network (CNN) is a type of 

Deep Learning algorithm (Abdullahi et al., 2017) that 

consists of multiple convolutional layers, pooling 

layers, and fully connected layers. CNNs find 

widespread applications in areas like handwritten 

character recognition and image processing. Within 

computer vision, CNNs are utilised for diverse tasks 

such as object detection, and image. classification, 

voice recognition, image segmentation, medical image 

analysis, and text and video processing. The standard 

components of a CNN architecture include 

convolutional layers, pooling layers, and fully 

connected layers (Ajit et al., 2020). Figure 3 illustrates 

the structure of a CNN, with brief explanations of each 

layer provided below. In a CNN, the convolutional layer 

serves as a fundamental and crucial component. It 

captures the distinctive features of images while 

allowing for the simultaneous processing of data in a 

more manageable way. Following this, pooling 

operations aggregate various dimensions of an image, 

enabling the recognition of objects even when they are 

distorted or positioned at different angles. This process 

reduces the number of learnable features in the model, 

effectively mitigating the risk of overfitting. Pooling 

can be achieved through methods such as average 

pooling, maximum pooling, and stochastic pooling. 

Finally, the fully connected layer, the last stage, is 

responsible for feeding the neural network (Ajit et al., 

2020). 

 

 
 

4.2 Recurrent Neural Networks (RNNs) 

An RNN stands for Recurrent Neural Network, which is 

a specialized type of neural network model known for 

its outstanding performance in essential tasks like 

machine translation, language modelling, and speech 

recognition. (Zaremba, 2014). Unlike conventional 

  

Disease  
Detection 

Yield Prediction 

Crop  
Management 

Water  
Management 

Soil Management 

Weed Detection 

Fruits Counting 

  
Fig. 3  Convolutional Neural Network Architecture   
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neural networks, RNNs leverage the sequential 

information within the data. This sequential aspect is 

crucial in numerous applications as it allows the 

network to capture the inherent structure of the data 

sequence, extracting valuable information from it. Refer 

to Figure 4 for an illustration of the fundamental 

architecture of a recurrent neural network (Zaremba, 

2014). 

 

 
 

5.    Importance of Deep Learning in Agriculture 

5.1 Counting of fruit 

Accurately tallying fruits is crucial for growers as it 

enables them to estimate yields, aiding in efficient yard 

management. According to (Chen et al., 2017), 

automated fruit detection and algorithms play a pivotal 

role in optimizing agricultural production and 

enhancing harvest management. The authors introduced 

a method employing a DL algorithm pipeline 

comprising parts 0 to 3. In part 0, algorithms learn 

ground truths, followed using the Bob detection neural 

network in part 1 and fruit counting via a neural network 

in part 2. The final count is obtained through linear 

regression in part 3 (Chen et al., 2017). In another study, 

detailed in (Rahemoonfur and Sheppard, 2017), 

researchers proposed automatic yield estimation 

utilizing robotic agricultural techniques to enhance 

manual fruit counting. They utilized Inception-ResNet, 

a deep simulated learning technique, achieving high 

accuracy with minimal computational cost. Notably, 

their approach doesn't demand a vast dataset for neural 

network training; instead, it can be trained using 

synthetic images, resulting in a remarkable 91% 

accuracy. This innovative DL method empowers 

farmers to efficiently count fruits and make precise 

decisions (Rahemoonfur and Sheppard, 2017). 

Similarly, (Apolo-Apolo et al., 2020), authors trained a 

Fast R-CNN DL model to detect, count, and predict the 

appropriate size for citrus fruits. Additionally, they 

employed the LSTM detection method to calculate the 

number of fruits on each tree, as depicted in Figure 5. 

DL methods, such as automated yield detection, DL 

simulation, and Fast R-CNN, prove invaluable in fruit 

counting. Table 1 outlines the most recent techniques 

for fruit tallying. 

 

 
Fig. 5 Flowchart for Faster R-CNN 

 

  

  
Fig. 4 Recurrent neural network architecture   
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Table 1: Summary of different DL methods for counting fruit 

Ref DL Technique Dataset Accuracy 

(Sa et al., 2016) Faster R-CNN TL 0.83 F1-score 

(Krizhevsky et al., 2012) Inception-Resnet-v4 ILSVRC N/A 

(Bargoti & Underwood, 

2017) 

VGG-16 Orchard 95% 

(Fu et al., 2018) CNN Kiwifruit 89.2% 

(Katarzyna and Pawel, 

2019) 

YOLO V3 PT+WGISD ……… 

(Villacres & Auat, 2020) Faster R-CNN +Iv2 Cherries 85% 

(Chung  &  Van  Tai, 

2019) 

E-Net Fruit #60 94% 

(Wang & Chen, 2018) 8-layer CNN Model Own Collection 95.67% 

(Santos et al., 2020) YOLO V3 PT+WGISD 97% 

 

5.2 Water Management 

Water, a vital natural resource for agriculture, 

necessitates efficient recycling to sustain agricultural 

development. According to researchers (Chen et al., 

2020), while water is essential for agriculture, pollutants 

from industries and daily wastewater contaminate it. To 

safeguard agriculture from water pollution, a DL 

technique is imperative. The authors (Chen et al., 2020) 

introduced a near-infrared (NIR) spectroscopy method 

for assessing water demand, protection, and recycling. 

This approach integrates the NIR system with an 

enhanced convolutional neural network (CNN) layer, 

employing decision tree analysis to extract informative 

data crucial for water management decisions. In India, 

agriculture serves as the backbone of the economy, 

relying significantly on water as a resource (Garg et al., 

2020). Conventional irrigation methods often lead to 

water wastage due to excessive usage and unplanned 

management. To address this, the authors proposed an 

integrated approach utilizing DL methods to enhance 

the country's irrigation system, as depicted in Figure 6. 

The system incorporates sensors detecting soil humidity 

and predicting soil irrigation requirements efficiently. 

Moreover, researchers emphasized the critical role of 

water as a resource, particularly in assessing 

evapotranspiration (Mohan and Patil, 2018). 

Evapotranspiration assessment, employing DL 

techniques, accurately predicts future water needs, 

offering valuable insights for real-time irrigation 

management. Consequently, DL techniques empower 

farmers to precisely regulate their irrigation systems, 

ensuring optimal water usage. 

 

 
Fig. 6 Deep learning approach for water management [40] 

 

5.3 Crop Management 

Deep learning frameworks have become increasingly 

vital in crop management, a pivotal subfield of 

agriculture. Researchers (Yang and Sun, 2019) 

emphasized the benefits of employing DL technology in 

crop planting, the initial and crucial stage of crop 

production that requires efficient management to 

enhance yields. The authors explored diverse DL 

techniques for crop planting, such as VI Seed for 

soybean production, Fast R-CNN for counting and 

measuring sorghum plant stalks, CNN for identifying 

localized features of roots and shoots, and VGG-16 for 

categorizing crops and weeds. In the realm of crop 

prediction, various deep-learning networks have proven 

valuable, as outlined in (Dharani et al., 2021). These 

networks, including ANNs, utilize regression methods 
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along with crop species, images, and climatic, and soil 

properties to predict the production of crops like wheat, 

barley, sugarcane, sunflower, and potato. Additionally, 

(Dharani et al., 2021) discussed techniques such as two-

layered DNN LSTM, employed to forecast tomato, 

soybean, and corn production. This approach integrates 

regression methods with vegetative indices, 

environmental characteristics, and soil properties. 

Furthermore, the critical role of intelligence in precise 

crop management was highlighted by researchers 

(Zheng et al., 2019). They introduced the Crop Deep 

approach, which classifies and detects various crop 

classes. Using cameras and models, Crop Deep delivers 

crop management services, offering valuable analyses 

for decision-making, even amid real-world challenges 

like weather uncertainties (refer to Figure 7). Table 2 

provides an overview of the most recent methods in 

crop management. 

 

 
Fig. 7 Crop plant deep-learning detection and classification models [44] 

 

Table 2: Different literature on DL methods for crop management 

Ref DL Method Application Accuracy (%) 

(Lottes  et  al.,  2020) 

(Lottes& Behley, 2018) 

FCN architecture crop classification 84.5 

(Chaven & Nandedkar, 

2018) 

AgroAVNET Crop/weed classification 98.23 

(Suh et al., 2018) AlexNet,  VGG-19, 

GoogleNet,  ResNet-50, 

ResNet-101, Inception-v3 

 

Crop/weed classification 

 

96(VGG-19) 

(Suh et al., 2018) AlexNet,  VGG-19, 

GoogleNet,  ResNet-50, 

ResNet-101, Inception-v3 

 

Crop/weed classification 

 

96(VGG-19) 

(Meng et al., 2021) 1D/2D/3D CNN Crop mapping 94 (3D CNN) 

 

5.4 Soil Management 

Soil management encompasses a range of practices and 

treatments designed to safeguard soil and enhance 

agricultural field productivity. Researchers (Cai et al., 

2019) pointed out that DL techniques offer valuable 

assistance in managing soil moisture levels. Creating 

accurate mathematical models for soil moisture proves 

challenging, but the authors improved DL regression 

models by utilizing extensive datasets, enabling precise 

determination of soil moisture content. In a broader 

historical context, agriculture has been a vital part of 

human life since ancient times, even predating 

civilization, as emphasized by scholars (Yashwant et al., 

2020). Soil yield significantly influences crop 

production and overall agricultural efficiency. To 

safeguard soil from herbicide toxicity while retaining 

moisture, the authors explored the implementation of 

the Keras API in Python. Additionally, they utilized a 

first-order agriculture simulator based on discrete-time 

and the Richard equation to precisely assess soil 

moisture levels. This simulator, combined with aerial 

images containing specific soil moisture information, 

underwent analysis through seven methods, including 

constant prediction baseline, SVM, and (Neural 

Network) NN. The results indicated that employing a 

CNN led to a remarkable 52% reduction in water 

consumption (Tseng et al., 2018). This research 

underscores the potential of DL techniques in 

effectively managing soil moisture levels.       proves 

challenging, but the authors improved DL regression 

models by utilizing extensive datasets, enabling precise 

determination of soil moisture content. In a broader 

historical context, agriculture has been a vital part of 

human life since ancient times, even predating 



Deep Learning in Agriculture: Challenges and Opportunities – A Comprehensive Review  

  

2404                                                               Afr. J. Biomed. Res. Vol. 28, No.1s (January) 2025                 Shemim Begum et al.  

civilization, as emphasized by scholars (Yashwant et al., 

2020). Soil yield significantly influences crop 

production and overall agricultural efficiency. To 

safeguard soil from herbicide toxicity while retaining 

moisture, the authors explored the implementation of 

the Keras API in Python. Additionally, they utilized a 

first-order agriculture simulator based on discrete-time 

and the Richard equation to precisely assess soil 

moisture levels. This simulator, combined with aerial 

images containing specific soil moisture information, 

underwent analysis through seven methods, including 

constant prediction baseline, SVM, and (Neural 

Network) NN. The results indicated that employing a 

CNN led to a remarkable 52% reduction in water 

consumption (Tseng et al., 2018). This research 

underscores the potential of DL techniques in 

effectively managing soil moisture levels. 

Additionally, scholars expressed concerns about 

herbicides leading to weed resistance (Westwood et al., 

2018). Precision techniques for weed detection are 

pivotal to enhancing crop production. Advancements in 

computing technology have revolutionized our 

understanding of weed biology and ecology. Among 

these techniques, DL stands out for its ability to 

categorize weeds within crop varieties and eliminate 

them effectively. In a related study, researchers (Mishra 

and Gautam, 2021) emphasized that DL techniques, 

including classification SVMs and CNNs, alleviate the 

burden on farmers by enabling accurate weed detection. 

These techniques involve capturing weed images 

through cameras, followed by analysis using a Gray-

level occurrence matrix to identify homogeneity among 

the images. The colour information obtained through 

the hue saturation value (HSV) helps describe the 

weed's characteristics, as illustrated in Figure 8. Hence, 

DL techniques play a crucial role in weed detection, 

lightening the load on farmers and promoting increased 

crop yield. 

 

5.5 Seed Classification 

In agriculture, the cornerstone of crop production lies in 

seeds. Researchers emphasized by (Gulzar et al., 2020) 

that seeds are pivotal to crop cultivation; without them, 

the production and harvesting of crops would be utterly 

impossible. The escalating population growth has 

intensified the demand for precision in seed 

identification and classification, placing significant 

pressure on agricultural processes. To enhance the 

efficiency of seed classification, the authors introduced 

a CNN-based technique. This method incorporated 

advanced strategies, including the utilization of decayed 

learning points. 

 

5.6 Classification of Plant Diseases 

The presence of fungi, microbes, and bacteria can lead 

to reduced crop yields in plants. If left undiagnosed, 

these diseases can cause significant economic losses for 

farmers. To counteract these issues, farmers often resort 

to using pathogen-killing pesticides, but these solutions 

come at a high cost. Additionally, the excessive use of 

pesticides can harm the environment and disrupt water 

and soil cycles (Sharma et al., 2020). Detecting plant 

diseases in their early stages is crucial, as these diseases 

hinder plant growth. Deep Learning (DL) models have 

been employed to recognize and categorize various 

plant diseases, and multiple DL architectures have been 

proposed to enhance the accuracy of disease detection 

(Saleem et al., 2019). In their study (Amara et al., 2017), 

the authors introduced a novel approach to address this 

challenge. A method for swiftly identifying and 

categorizing banana diseases has been devised based on 

CNN. This innovative model processes leaf images, 

aiding farmers in promptly detecting two specific 

banana diseases, namely Sigatoka and speckle. 

Additionally, researchers (Dipali and Deepa, 2021) 

utilized AlexNet to precisely classify plant diseases 

based on leaf images. Another breakthrough was the 

development of a DL hybrid model described in (Akash 

and Malik, 2021), capable of identifying and 

categorizing diseases affecting sunflowers, such as 

Verticillium wilt, Phoma rot, downy mildew, and 

Alternaria leaf rot. To simplify disease diagnosis, the 

authors (Ahmed and Reddy, 2021) created a mobile app 

employing machine learning techniques to recognize 

diseases affecting plant leaves. Remarkably, this app 

can classify a diverse array of 38 plant diseases. To 

bolster their approach, they collected a substantial 

dataset of 96,206 images, encompassing both healthy 

and diseased plant leaf samples, for rigorous training, 

testing, and validation of the model. 

 

Additionally, researchers (Pallagani et al., 2019) 

introduced a pre-trained, transfer-learning deep neural 

network model proficient in predicting crop diseases by 

learning distinctive leaf characteristics from input data. 

Their comprehensive exploration involved various DL 

and CNN topologies, including ResNet, MobileNet, 

Wide ResNet, and DenseNet. The results demonstrated 

that their method surpassed previous approaches in 

terms of both accuracy and memory efficiency. 

 

Furthermore, a CNN-based methodology for detecting, 

classifying, and identifying plant diseases was proposed 

by (Sladojevic et al., 2016). This model exhibited 

remarkable accuracy in identifying 13 different plant 

diseases, ranging from 91 to 98%. Notably, it could 

differentiate between unhealthy and healthy leaves as 

well as their backgrounds. In a different approach, 

authors (Arivazhagan et al., 2013) leveraged a dataset 

of 500 diverse leaf images to propose a model based on 

a Support Vector Machine (SVM) classifier. This model 

demonstrated exceptional accuracy, achieving a rate of 

94% in accurately identifying plant diseases. For a 

detailed overview of the most recent methods in plant 

disease classification, please refer to Table 3. 
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Fig. 8 Flow chart for Weed detection and classification. [54] 

 

Table 3: Outline of different DL techniques for detecting plant diseases 

Ref Class of Leaf Method Accuracy (%) 

(Chen et al., 2020) Rice VGGNet 92.00 

(Sharma et al., 2020) Tomato F-CNN & S-CNN 98.30 

(Atila et al., 2021) Plant leaf Efficient Net 96.18 

(Kaur et al., 2022) Grapes Hy-CNN 98.70 

(Ji et al., 2020) Grapes United model 98.20 

(Gadekallu et al., 2021) Plant leaf Whale and DL 95.10 

(Azimi et al., 2021) Crop FCNN and SCNN 92.01 

(Joshi et al., 2021) Coffee Deep CNN 98.00 

 

5.7 Yield Prediction 

Accurate yield predictions for each crop are crucial and 

require meticulous attention. Agricultural machine 

learning and deep learning (DL) algorithms play a 

central role in predicting crop yields, providing valuable 

insights to farmers regarding cultivation readiness and 

harvest timing (Kavitha, 2022). 

Manjula and colleagues (Josephine et al., 2022) 

proposed a model based on an RF classifier that 

achieved an impressive 99.74% accuracy in predicting 

millet crop yield. However, predicting crop yield 

remains challenging due to the intricate interplay of 

various factors. Representing genotype information 

demands high-dimensional marker data, encompassing 

millions of markers for each plant. The influence of 

genetic markers must be estimated, considering the 

multitude of environmental conditions and field 

management techniques. In recent studies, a range of 

machine-learning models, including association rule 

mining, Artificial Neural Networks (ANNs), decision 

trees, and multivariate regression, have been explored 

for crop yield prediction. Notably, both machine 

learning (ML) and DL models treat the output as an 

implicit function of input variables, often resulting in 

highly nonlinear and complex functions ((Khaki and 

Wang, 2019).  In-depth research has been conducted in 

this field (Deepika and Kaliraj, 2022) employing a 

neural network with a single hidden layer to predict corn 

yield using weather, soil, and management data. 

Similarly, (Deepika and Kaliraj, 2022) utilized neural 

networks, projection pursuit regression, and stepwise 

multiple linear regression to forecast crop yield. Their 

findings indicated the superior performance of the 

neural network method over traditional regression 

approaches. Additionally, (Deepika and Kaliraj, 2022) 

predicted soybean varieties' yields using weighted 

histogram regression, surpassing the effectiveness of 

conventional regression algorithms. 

 

 
Fig 9. Plant disease detection [79] 
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5.8 Disease Detection 

In the realm of agriculture, a significant concern for 

farmers is the occurrence of crop diseases. Thanks to 

advancements in Artificial Intelligence (AI) and DL 

technologies applied in agricultural sectors, detecting 

crop diseases has become a much simpler process. 

Before the integration of advanced technology in 

agriculture, identifying diseases in crops during their 

early stages was a time-consuming and laborious task 

that required manual intervention (Ale et al., 2022). 

Plant diseases not only hamper plant growth and 

population but also profoundly impact a country's 

economy. Therefore, it is imperative to adopt automatic 

and precise techniques for predicting and detecting the 

severity of plant diseases. This is crucial for disease 

management, ensuring food safety, and estimating 

potential financial losses. In many developing 

countries, farmers often must travel long distances to 

consult with experts, leading to substantial expenses 

and time consumption (Deepika and Kaliraj, 2022). 

This challenge can be mitigated by developing a robust 

and user-friendly system for plant or crop disease 

detection. Such a system would require an extensive 

database of sample images of diseased crops, which 

could be uploaded to the cloud. The system could 

operate on IoT devices, such as smartphones and tablet 

PCs, equipped with suitable computational capabilities. 

Efforts have been made to address this issue of crop 

diseases, indicating progress in this field. 

Nikhil Patil and colleagues introduced a crop disease 

detection system utilizing a CNN, as outlined in their 

study (Zhu et al., 2018). This system exhibited an 

impressive accuracy rate of 89% compared to 

conventional methods of crop disease detection. 

Consequently, CNN systems are highly dependable in 

image processing, especially in agricultural research, 

where they find widespread application. 

 

In the realm of agriculture, most applications of DL and 

AI can be categorized under plant or crop classification. 

This classification is pivotal for various purposes such 

as disaster monitoring, robotic harvesting, pest control, 

and yield prediction. Recognition models for plant and 

crop diseases primarily rely on pattern recognition and 

leaf images (Zhu et al., 2018). Therefore, DL and AI 

models are capable of automatically identifying 

diseased plants and triggering alerts to farmers for 

prompt action. Figure 9 provides an illustrative example 

of how DL and AI technologies can effectively detect 

plant diseases. 

In their study, (Zhu et al., 2018) introduced a crop 

disease detection system utilizing a CNN, which 

exhibited an impressive accuracy rate of 89% compared 

to traditional methods. Therefore, in the realm of image 

processing, CNN systems stand out as dependable tools, 

especially in agricultural research where they are 

extensively employed. DL applications in agriculture 

mainly revolve around plant or crop classification, 

serving critical purposes such as disaster monitoring, 

robotic harvesting, pest control, and yield prediction. 

Recognition models for plant and crop diseases are 

primarily grounded in pattern recognition and leaf 

images. Consequently, DL and AI models possess the 

capability to automatically identify diseased plants, 

triggering alerts for farmers to take early action. An 

illustrative example of this capability is presented in 

Figure 9, demonstrating how DL and AI technologies 

excel at detecting plant diseases. 

 

6. Application of Deep-Learning Models in 

Agriculture 

Different approaches have been explored in the 

development of DL tools, as outlined in (Zhao and 

Koch, 2013). Python tools, for instance, emphasize the 

concept of saliency in images. Saliency, in this context, 

refers to unique features such as pixels or image 

resolution crucial in visual processing. 

The gradient explanation technique utilizes a gradient-

based attribution method, where each gradient 

quantifies input dimensions that can influence 

predictions around the input. Integrated gradient, a 

gradient-based attribution, forms predictions in deep 

neural networks by considering attributions related to 

the network's input features (Kummerer, 2015). 

Deep label-specific feature (Deep LIFT) is another tool 

designed to ensure the accuracy of deep neural network 

predictions. Also known as the gradient + input method, 

it enhances the gradient with the input signal, 

particularly useful in models trained with natural 

images and genomics data (Shrikumar, 2017). Neuron 

activation occurs based on contribution scores 

calculated by the system, involving comparisons 

between different outputs, benchmarked outputs, and 

input differences from their reference inputs. Guided 

backpropagation, or guided saliency, employs a 

deconvolution approach and is commonly used in 

various network structures, including max pooling in 

CNNs (Springerberg and Dosovitskiy, 2022). Its 

purpose is to substitute max-pooling layers with a 

convolutional layer, enhancing visualization. 

Additionally, deconvolution, a technique for visualizing 

CNNs, and deconvolutional networks share similar 

aspects, as suggested by the authors (Zeiler and Fergus, 

2014). 

Furthermore, Class Activation Maps (CAMs) were 

proposed for image identification (Zhou et al., 2016). 

Analysts can inspect specific images, and their parts or 

pixels are utilized to form the final output, enhancing 

the interpretability and understanding of DL models. In 

simpler terms, Class Activation Maps (CAMs) are 

employed to examine specific regions of an image, a 

technique commonly used with CNNs. After obtaining 

a weighted sum of the vector, a final SoftMax-loss layer 

is formed. Additionally, layer-wise relevance 

propagation (LRP) serves as a tool for dissecting 

nonlinear classifiers, enhancing the interpretability of 

DL models (Bach and Binder, 2015). These DL tools are 

readily available for model development. 

According to recent studies (Uzal et al., 2018), Deep 

Neural Networks (DNN) can be harnessed, especially 

with CNNs, to assess seed quality in agriculture. These 

models can evaluate the quality of seeds within soybean 

pods, including sorting haploid seeds. Assessments 

encompass shape, phenotypic expression, and 
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embryonic pose (Nkemelu et al., 2022). CNNs have also 

been instrumental in classifying plant seedlings into 12 

distinct species. Moreover, researchers (Amiryousefi et 

al., 2017) utilized an image analysis technique to create 

a Principal Component Analysis (PCA) for clustering 

seeds efficiently and economically. In the realm of 

disease detection, DL algorithms like Inspection-v3, 

VGG-16, and VGG-19 have proven more efficient in 

detecting citrus plant diseases compared to other 

innovations (Sujatha et al., 2021). DL methods facilitate 

the identification of plant diseases from individual 

lesions and spots, enabling focus on specific areas rather 

than analysing the entire leaf (Arnal, 2019). This 

approach, noted in (Liu et al., 2017), enhances accuracy 

by 12% and is adept at detecting multiple diseases on 

the same leaf. DL models have also revolutionized 

disease detection in plants, including apple leaf and fruit 

diseases, through CNN models (Bresilla et al., 2019). 

These studies demonstrate the effectiveness of DL in 

agriculture, extending to harvesting techniques. 

Researchers (Altaheri et al., 2019) devised a shot-

detector (YOLO) algorithm for on-tree fruit detection, 

employing deep-learning models for apples and pears. 

The robustness of these DL models, as evidenced by 

(Meshram et al., 2021), offers promising results in the 

harvesting process, utilizing bio-inspired features. In 

summary, DL, particularly CNNs, has emerged as a 

pivotal technique in agriculture, showcasing enhanced 

accuracy and improved learning capacities when 

incorporated into various agricultural applications. 

These advancements underscore the pivotal role of DL 

in boosting efficiency across agricultural practices. 

 

7. Results and Discussions 

The findings from the studies show that DL mechanisms 

have helped farmers in different areas of agricultural 

production. These include counting fruit, management 

of water, crop management, soil management, weed 

detection, seed classification, yield prediction, disease 

detection, and even harvesting. A summary of the key 

findings is presented in Table 4. 

The comprehensive literature review reveals the 

manifold ways in which DL has positively impacted the 

agriculture industry. The sector, faced with challenges 

like increased demand and a decreasing workforce, has 

found solutions through smart farming, which addresses 

concerns related to productivity, environmental impact, 

food security, and sustainability, consequently 

enhancing agricultural efficiency (Santos et al., 2022). 

Agriculture's pivotal role in the global economy cannot 

be overstated, ensuring food security for regions and 

serving as the backbone of numerous businesses 

involved in international trade (Kamilaris, 2018). DL 

methods have played a transformative role in 

agriculture, employing cutting-edge prediction analyses 

and tools to foster sector growth. Scholars have utilized 

various tools to demonstrate the efficacy of DL 

methods. Notably, the size of the dataset used in DL 

methods significantly influences the quality of the 

results obtained, with accurate predictions leading to 

informed decision-making in agricultural processes 

(Thai Nghe et al., 2022). Traditional farming practices 

have led to environmental consequences such as soil 

nutrient depletion, deforestation, and soil erosion 

(Traditional Agriculture: An Efficient and Sustainable 

Farming Method. Stories.pinduoduo-global.com. 

2021). Traditional agricultural methods are insufficient 

to promote sector efficiency. To meet future demands 

and embrace emerging technologies like DL, remote 

sensors, and distributed computing, agriculture must 

evolve intelligently (Khan et al., 2022). 

The study's findings emphasize the substantial 

improvements in farming outcomes and production due 

to the implementation of various DL tools. Advanced 

technologies and DL mechanisms have redefined the 

parameters for agriculture, increasing efficiency and 

accuracy across domains (Meshram et al., 2021). 

However, the integration of DL techniques in 

agriculture is not without challenges. Issues like dataset 

creation, staff training time, the need for skilled labour, 

system development, hardware maintenance, and 

deploying large models on small devices, such as 

mobile phones, present obstacles. Moreover, raising 

awareness among staff when DL methods are utilized 

proves to be a challenge in agricultural settings (Wang 

et al., 2021). 
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Table 4: Application of different DL methods in Agriculture 

Ref Model Used Objective of application Outcomes 

(Shaila  and  Begum, 

2021) 

Fruit  detection  and 

DLalgorithm pipeline 

Counting fruit Optimisation of agriculture 

output, 

Good Harvesting outcome 

(Rahnemoonfur  & 

Sheppard, 2017) 

Inception-ResNet Counting fruit Obtaining 91% accuracy 

using synthetic images 

(Chen et al., 2017) Near-infrared 

spectroscopy 

Water management Enhances water recycling 

and safeguard 

(Moha &Patil, 2018) Evapotranspiration Water management Acute prediction of water 

specification in irrigation 

management 

(Yang & Sun, 2019) R-CNN Measuring Crop planting CNN finds localized 

features of roots and shoots. 

(Dharani et al., 2021) DNN LSTM Crop regulation Focused environmental and 

soil features. 

Accurate prediction of 

tomato, corn &soybean 

production. 

(Yashwant et al., 2020) Keras API Soil handling Aids in mitigating the 

detrimental impact of 

herbicides and soil toxicity, 

while also preserving 

essential moisture content. 

(Yang & Sun, 2019) R-CNN Measuring Crop planting CNN finds localized 

features of roots and shoots. 

(Tseng et al., 2018) Agriculture  simulator 

with discrete time 

Soil handling Aids in mitigating the 

detrimental impact of 

herbicides and soil toxicity, 

while also preserving 

essential moisture content. 

(Yashwant et al., 2020) Agriculture simulation 

using Richard equation 

Weed identification Enhances soil protection 

against toxins and promotes 

optimal plant yields for 

higher production. 

(Mishra  &  Gautam, 

2021) 

SVM & CNN Detection of weed Utilizing a camera to 

capture weed images, 

followed by analysing the 

grey-level occurrence 

matrix to assess image 

homogeneity, lightens the 

workload for farmers. 

(Gulzar et al., 2020) CNN Classification of seed Efficient classification 

(Josephine et al., 2022) Random forest Yield prediction Offers  unparalleled 

precision  in 

 predicting crop 

yields. 

(Deepika  &  Kaliraj, 

2022) 

Histogram regression Yield prediction Provides  precise 

identification of soybean 

varieties. 

(Zhu et al., 2018) CNN Disease identification Attained an accuracy rate of 

89%, surpassing other 

conventional methods for 
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    detecting crop diseases. 

Enhances pest management, 

enables robotic harvesting, 

and boosts crop yield 

forecasts and disaster 

monitoring capabilities. 

(Meshram et al., 2021) Bio-inspired methods Harvesting  Enhances  harvesting 

productivity and enhances 

precision in agricultural 

harvesting. 

(Lu et al., 2022) Canopy-attention- 

YOLOv4 

Fruit detection  Precision = 94.89%, Recall = 

90.08% ,F1 = 92.52% 

(Lyu et al., 2022) Citrus sort Fruit  detection 

counting 

and Recall = 97.66% Precision = 

86.97% mAP = 98.23% 

 

In mitigating these challenges, techniques like transfer 

learning have been explored, particularly useful when 

there's a limited dataset and time for model accuracy 

testing (Coulibaly et al., 2019). AI, combined with DL 

and robotics, has proven effective in overcoming 

challenges faced in agricultural production (Sahni et al., 

2021 Khan et al.,  2021). Automated machine learning 

(AutoML) is another innovative technique enhancing 

agricultural production. When integrated with DL 

methods, AutoML minimizes challenges, 

demonstrating its utility in agricultural contexts. While 

DL methods have significantly enhanced agricultural 

production, addressing challenges requires a holistic 

approach. Combining DL with other emerging 

technologies such as robotics, the IoT, and distributed 

computing holds promise. This synergy ensures a 

comprehensive and effective response to the challenges 

faced in the agriculture sector, ushering in a new era of 

efficiency and sustainability. 

 

Most Deep Learning (DL) techniques in agriculture 

presently employ straightforward algorithms and 

network structures. This is primarily because the 

integration of deep learning with precision agriculture 

is still in its nascent stage. The limited collaboration 

between the computer science and agriculture 

communities further exacerbates this issue. While Table 

1 illustrates that several DL algorithms achieved 

accuracy rates of 90% or more with specific datasets, 

it's crucial to note that these results lack generalizability. 

When these networks are applied to different datasets or 

real farmland environments, their accuracy and speed 

often fall short of benchmarks. This disparity arises due 

to the significant differences in complexity, quality, and 

quantity between agricultural datasets and actual 

farmland environments. 

 

Numerous innovative approaches have been proposed 

to reduce the dependence of DL models on agricultural 

datasets. These include strategies like transfer learning 

(Kaya et al., 2019 and Sharma et al., 2022), few-shot 

learning (Argueso et al. 2020 and Zhong et al., 2020), 

graph convolutional networks (Jiang et al., 2020), and 

semi-supervised learning (Khaki et al., 2021). However, 

comprehensive evaluations of these methods are still 

pending. Only a handful of recent studies have 

concentrated on tailoring deep-learning algorithms and 

neural network architectures specifically for 

agricultural applications. For instance, some studies 

have focused on optimizing the parameters utilized in 

DL models. Additionally, researchers have dedicated 

efforts to enhancing DL algorithms and frameworks. A 

notable example is the work by authors (Sa et al., 2017 

and Sa et al., 2018, who developed WeedMap and 

WeedNet to achieve large-scale dense semantic 

segmentation of weeds using aerial images. Their 

modifications to the decoder enabled the utilization of a 

customized version of the VGG16 architecture in place 

of the original encoder. 

Jiao and colleagues (Jiao et al., 2020) developed a 

convolutional neural network known as Anchor-Free 

RCNN (AFRCNN) to achieve a balance between speed 

and accuracy in deep-learning algorithms applied to the 

detection of multiclass agricultural pests. To improve 

recognition accuracy in leaf disease detection, the 

authors (Eunice et al., 2022) utilized CNNs and pre-

trained models to identify plant diseases. The study 

focused on fine-tuning popular pre-trained models, such 

as DenseNet-121, ResNet-50, VGG-16, and Inception 

V4, using the Plant Village dataset, which contains 

54,305 images of plant diseases in 38 classes. The 

performance of the models was evaluated through 

various metrics. The results showed that DenseNet-121 

achieved the highest classification accuracy of 99.81%, 

outperforming other state-of-the-art models. In the same 

context, the authors (Wu et al., 2020) proposed a new 

method for data augmentation utilizing generative 

adversarial networks (GANs) for tomato leaf disease 

recognition. By utilizing deep convolutional generative 

adversarial networks (DCGANs) to augment the 

original images and GoogLeNet as the input, the 

proposed model was able to achieve the top average 

identification accuracy of 94.33%. The model was 

further improved by adjusting the hyper-parameters, 

modifying the architecture of the convolutional neural 

networks, and experimenting with different GANs. The 

use of DCGAN to augment the dataset not only 

increased its size but also improved its diversity, leading 

to better generalization of the recognition model. In 

addition, the authors of (Hammouch et al., 2021) 

proposed the use of a DCGAN to augment an original 

dataset and trained a convolutional neural network 
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(CNN) in the task of regression by utilizing the DCGAN 

to generate synthetic images that were realistic enough 

to be included in the training set. They employed a two-

stage scheme where the baseline CNN, trained with the 

original dataset, was utilized to predict the regression 

vectors for each image generated by the DCGAN. These 

regression vectors served as the ground truth for the 

augmented dataset, enabling the CNN to make more 

accurate predictions. 

 

8. Future Difficulties and Possibilities in the 

Agricultural Domain 

Deep learning has the potential to revolutionize the 

agricultural industry by enhancing crop production 

efficiency, enabling precision agriculture, and refining 

crop monitoring and forecasting techniques. However, 

realizing this potential in agriculture comes with its set 

of challenges that must be effectively addressed. 

 

One significant challenge is the scarcity of high-quality 

labelled data within the agricultural domain. 

Overcoming this challenge necessitates the 

development of novel data collection methods and the 

creation of extensive labelled datasets tailored for 

training deep learning models (Hammouch et al., 2021). 

Additionally, the computational demands associated 

with deep learning pose a hurdle, especially in resource-

limited environments like rural areas (Sourav and 

Emanuel, 2021). Moreover, deep-learning models in 

agriculture must demonstrate robustness and 

adaptability across diverse environments, varying crop 

types, imaging conditions, and sensor modalities. 

Achieving this requires the formulation of models that 

can generalize effectively across different scenarios and 

exhibit resilience to data variations (Bharma et al., 2022 

Goodfellow et al., 2014). Furthermore, given the often 

incomplete, noisy, or corrupted nature of agricultural 

data, methods capable of handling missing or 

incomplete data are crucial (Liu et al., 2019). Recent 

research efforts have explored robust deep-learning 

techniques, such as robust optimization, adversarial 

training (Liu et al., 2019), and metalearning (Madry et 

al., 2018 Finn et al., 2017), yet further research is 

essential in this domain. 

 

Interpretability and explainability are equally vital 

challenges facing deep-learning models in agriculture, 

as these factors are integral for decision-making 

processes and building trust among stakeholders. 

Ongoing research focuses on developing methods that 

shed light on the inner workings of deep-learning 

models. Techniques like explainable AI, such as Local 

Interpretable Model-Agnostic Explanations (LIME) 

(Ribeiro et al., 2016) and Shapley Additive 

Explanations (SHAP) (Lundberg and Lee, 2017), as 

well as interpretable deep learning methods like 

decision trees and rule-based systems (Caruana, 2015), 

are emerging to enhance model transparency. 

 

Additionally, integrating multiple data modalities, such 

as image, sensor, and weather data, is pivotal for 

enhancing the performance and accuracy of deep-

learning models in agricultural applications. This 

integration allows for a more comprehensive 

understanding of agricultural systems and contributes to 

the refinement of deep learning techniques in this sector. 

The adoption of multistream neural networks, 

particularly those employing attention mechanisms 

(Vaswami et al., 2017), is imperative in handling diverse 

data modalities and providing a holistic understanding 

of agricultural systems. Few-shot learning, a machine 

learning technique enabling models to generalize to new 

classes with minimal examples, holds promise in 

agriculture. It accelerates learning from limited data, 

enhancing efficiency and reducing the volume of 

required training data (Snell et al., 2017). 

 

In summary, while deep learning holds immense 

potential for revolutionizing the agricultural industry, 

several challenges must be surmounted for its full 

realization. Addressing issues related to model 

robustness, interpretability, incorporation of multiple 

data modalities, and embracing few-shot learning 

techniques is essential. Further research in these areas is 

critical to overcoming these challenges and harnessing 

the full power of deep learning in agriculture. 

 

9. Conclusions and Future Work 

The main objective of this study was to present a 

comprehensive overview of recent developments in the 

application of Deep Learning (DL) in the agricultural 

sector. The review encompassed various aspects of 

agricultural DL, including disease detection, yield 

prediction, weed identification, and other related studies 

published between 2015 and early 2022. The findings 

highlighted the diverse applications of DL tools in 

agriculture, ranging from fruit counting to harvesting, 

along with associated challenges. 

 

The study revealed that while DL processes have been 

integrated into agriculture, several challenges persist. 

Compiling datasets, training staff, and securing 

expertise in DL remain formidable obstacles. 

Additionally, issues such as system development, 

hardware requirements, and the deployment of large 

models on small devices like smartphones can impact 

system efficiency. Despite its potential, DL's 

application in agriculture is limited due to the high costs 

associated with hardware and software. Future research 

should focus on developing cost-effective DL methods 

for widespread use. Furthermore, efforts are needed to 

enhance the accuracy and effectiveness of DL 

techniques. Another hindrance to DL implementation in 

agriculture is the availability of computational 

resources. Training models necessitates significant 

computing power, which poses a challenge as datasets 

grow larger and DL networks become more complex. 

Continuous improvement in Graphics Processing Units 

(GPUs) and Central Processing Units (CPUs) 

performance is crucial for 

DL's widespread adoption. Cloud computing services, 

such as the Google Cloud Platform, have accelerated 

DL development, but stringent computation 

requirements mean that current agricultural DL 
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applications are primarily offline. Addressing these 

challenges is vital for the seamless integration of DL 

into agricultural practices. 
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