

https://africanjournalofbiomedicalresearch.com/index.php/AJBR

Afr. J. Biomed. Res. Vol. 27(4s) (December 2024); 6904-6908 Research Article

Genetic Association of *Pvull* & *Xbal* in *ESR1* with the Risk of Breast Cancer in the North Indian Population: A Case-Control Study

Ishan Behlam¹, Karanpreet Bhutani¹, Suvarna Prasad⁴, Sunita Manhas^{1*}, Amrit Sudershan^{2,3}, Parvinder Kumar^{2,5}

¹Maharishi Markandeshwar Institute of Medical Sciences& Research, Mullana, Ambala, Haryana-133207
 ²Institute of Human Genetics, University of Jammu, Jammu, Jammu & Kashmir, India-180006
 ³Department of Human Genetics, Sri Pratap College, Srinagar, Kashmir, Jammu & Kashmir, India-190001
 ⁴Department of Biochemistry, AIIMS Deoghar, Jharkhand, India-814152
 ⁵Department of Zoology, University of Jammu, Jammu, Jammu & Kashmir-India-180006

*Corresponding Author: Dr. Sunita Manhas

*Professor& HeadMaharishi Markandeshwar Institute of Medical Sciences& Research, Mullana, Ambala, Haryana-133207, Email: sunitamanhas@yahoo.com

Abstract

Background:Breast Cancer (BC) is the most prevalent cancer among women worldwide and is influenced by a combination of environmental and genetic factors. Among the genetic contributors, the estrogen receptor 1 (*ESR1*) gene and its associated polymorphisms, specifically *XbaI* and *PvuII*, have demonstrated variable risk patterns across different populations.

Aim: This study aims to investigate the relationship between the *XbaI* and *PvuII* genetic variants of the *ESR1* gene and the risk of developing BC in women from Haryana, North India.

Methods: A total of 200 participants (100 cases and 100 controls) were enrolled. Blood samples were collected for DNA extraction and genotyping using PCR-RFLP with *XbaI* and *PvuII* enzymes. Statistical analyses, including t-tests and odds ratios (OR), were performed to assess the associations, with a significance threshold of p < 0.05.

Results: The analysis revealed no significant age-related difference between the case and control groups (p > 0.05). Across all genetic models, the *XbaI* variant was not associated with BC risk. In contrast, the *PvuII* polymorphism showed significant associations in the dominant (OR = 2.0692; p = 0.0141) and over-dominant (OR = 1.9091; p = 0.0242) models, with a borderline trend in the allelic model (OR = 1.4839; p = 0.0605).

Conclusion: The *PvuII* polymorphism is significantly associated with increased BC risk in this population, while no significant association was found for *XbaI*.

Keywords: BC, *XbaI*, *PvuII*, genetic polymorphisms, risk factors

Author for correspondence: sunitamanhas@yahoo.com

Received: 11November 2024 Acceptance: 12 December 2024

DOI: https://doi.org/10.53555/AJBR.v27i4S.4901

© 2024 The Author(s).

This article has been published under the terms of Creative Commons Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0), which permits noncommercial unrestricted use, distribution, and reproduction in any medium, provided that the following statement is provided. "This article has been published in the African Journal of Biomedical Research

Introduction

BC is among the most prevalent cancers globally, with considerable variation in incidence rates across different regions, ranging from lower levels in some countries to significantly higher levels in others (**GBD Compare | IHME Viz Hub**). In India, BC is the most common cancer among women, posing a significant burden on public health (**Madhav et al., 2018**). It is, however, critical to delve deeper into how the prevalence of BC is influenced by a complex interplay of environmental and genetic factors. One such critical genetic factor is *ESR1*, a gene that encodes the estrogen receptor alpha (ERα), playing a pivotal role in the pathogenesis of BC.

The *ESR1* gene, known for its high polymorphism, contains two key variants, rs2234693 (*PvuII*, T>C) and rs9340799 (*XbaI*, A>G), that have garnered significant attention in BCresearch (**Chattopadhyay et al., 2014; Ghali et al., 2018; Al-Eitan et al., 2019**). These genetic variations in intron 1 of the *ESR1* gene (Sudershan et al., 2024) are linked to increased BC susceptibility. While several studies have examined their association with BC risk in various populations (**Surekha et al., 2007; Shen et al., 2006; AL-Tahhan and Refaat, 2010**), no research has been conducted in Haryana, India. This study aims to explore the association between these *ESR1* polymorphisms and BC risk in women from Haryana, addressing a critical issue for the North Indian population.

Method

Ethical permission, Consent to Participant& Sample Collection

The study was conducted in accordance with ethical guidelines and received approval from the Institutional Ethics Committee (IEC) of Maharishi Markandeshwar Institute of Medical Science & Research, Mullana (MMIMSR), Ambala (Reference No: IEC/2349, Dated: 09-12-2022). All participants provided informed consent before being included in the study.

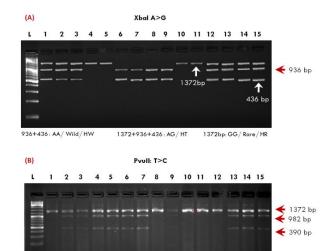
Patient recruitment occurred from January 2023 to June 2024 at the Department of Oncology, MMIMSR, Mullana, Ambala, using a convenience sampling method. Patients diagnosed with pre-operative BC (incident cases) were identified and approached for participation. An experienced oncologist (AKS) conducted detailed assessments. A "sample availability calculator" (Sudershan et al., 2022) was used to estimate participant availability.

Control subjects were selected from the hospital's general Outpatient Department (OPD) through hospital-based sampling. Controls were carefully screened to ensure they had no signs of BC, other cancers, or hereditary conditions. The study included 100 patients and 100 controls, maintaining a balanced 1:1 ratio and matching individuals by age to minimize group differences.

Blood samples were collected in 5 ml EDTA vials to preserve sample integrity and stored at -20°C for future genetic analysis. After collection, the samples were transported from MMIMSR, Ambala to the Molecular Genetic Lab at the Institute of Human Genetics, University of Jammu. Strict preventive measures were

taken during transportation, including packing the samples in ice containers to preserve their quality and prevent degradation. Upon arrival at the lab, the samples were carefully verified for integrity and proper labeling to ensure accurate and reliable results in subsequent analyses.

DNA Isolation and Genotyping


Blood samples from both cases and controls were collected for DNA extraction using the standard Phenol-chloroform-isoamyl alcohol method. Following extraction, DNA quality was assessed by mixing each sample with 1 μl of 1× DNA loading dye containing bromophenol blue, glycerol, and EDTA, and loading it onto a gel for analysis. DNA concentration was measured using spectrophotometry to ensure accurate quantification for downstream analyses.

Pre-designed primers (F: 5'-CTG CCA CCC TAT CTG TAT CTT TTC CTA TTC TCC-3' & R: 5'-TCT TTC TCT GCC ACC CTG GCG TCG ATT ATC TGA -3') were employed to amplify the genotypes of the variants under investigation. The PCR reaction mixture (Forward Primer 0.5 µl, Reverse Primer 0.5 µl, Nuclease-Free Water 7 µl, Green Master Mix 7 µl, Genomic DNA 2 µl; Total Volume 17 µl) was optimized to maximize target DNA yield. The amplification was carried out using a series of temperature cycles: an initial denaturation at 94°C for 4 minutes, followed by 35 cycles consisting of denaturation at 94°C for 50 seconds, annealing at 62°C for 50 seconds, and extension at 72°C for 1 minute. A final extension step at 72°C for 7 minutes was performed to ensure complete extension of all DNA fragments. These conditions were carefully optimized to ensure efficient and specific amplification of the target variants for subsequent analysis.

Genotyping was performed using the RFLP method with the enzymes *XbaI* and *PvuII* for the selected variants. The reaction mixture consisted of Double Distilled Water (8 μ I), Restriction Buffer (1.5 μ I), Restriction Enzyme (0.5 μ I), and PCR Product (6 μ I). Genotyping was validated by randomly selecting samples for repeated testing. The PCR-RFLP products were analyzed by electrophoresis on a 3% agarose gel and visualized using the ChemiDoc XRS+ Gel Imaging System (**Figure 1A & B**).

Statistical Analysis

Statistical analysis was conducted to assess the relationship between genetic variants and BC risk. Genotype and allele frequencies were determined using descriptive statistics in Microsoft Excel, while demographic characteristics were summarized to characterize the study population. A t-test, performed using GraphPad, compared the means between the case and control groups. Odds ratios (OR) and 95% confidence intervals (CI) were calculated using MedCalc to evaluate the strength of associations across different genetic models. A p-value of less than 0.05 was considered statistically significant, indicating a meaningful difference between the groups.

Figure 1A &B: L represents the 100 bp ladder. Wells 1-3 and 12-15 represent heterozygote (AG). Wells 4, 5, 10, and 12 represent homozygous (GG). Wells 6-9 represent homozygous wild-type (AA). (**B**): L represent the 100bp ladder, Well 1, 8, 10-12 showed Homozygous Recessive (CC) genotype, Well 2-7,9, & 13-15 showed heterozygous (CT)

1372+982+390: CT/HT

1372 CC/Rare / HR

Result

Demographic Profile

982 + 390 bp: TT/ Wild/HW

A total of 200 participants were included in this analysis, with 100 cases and 100 controls (1:1 ratio). The mean age of the cases was 55.05 ± 11.37 years, while the controls had a mean age of 52.64 ± 4.87 years. A t-test comparison showed no statistically significant age difference between the two groups (p > 0.05), suggesting that the age distribution was similar across both groups.

Genetic Association

After evaluating the demographic features, we proceeded with the genetic association analysis, starting with the Hardy-Weinberg Equilibrium (HWE) analysis. For the XbaI variant, the control group exhibited a higher frequency of homozygous wild-type genotypes (38% vs. 30%) and a higher wild-type allele frequency (0.63 vs. 0.565) compared to the case group. Both groups were in HWE (p > 0.05) (**Table 1**). Regarding the genetic association of the XbaI variant, none of the genetic models showed statistically significant associations with disease risk. The odds ratios varied from 1.1277 in the over-dominant model to 1.7944 in the codominant model. However, all p-values exceeded 0.05, indicating no significant association between the XbaI variant and disease risk across the tested models. Although the codominant model yielded the highest odds ratio (1.7944), suggesting a potential increased risk, the result was not statistically significant (Table 2).

Table 1: Genotypic and Allelic Frequencies of *XbaI* and *PvuII* Variants in Cases and Controls with Hardy-Weinberg Equilibrium Analysis

nt	Subject Type	Genotypic frequency			HWE
Variant		HW	НТ	HR	p- value
XbaI	Case	30	53	17	>0.05
		(30.00%)	(53.00%)	(17.00%)	
	Control	38	50	12	>0.05
		(38.00%)	(50.00%)	(12.00%)	
PvuII	Case	30	60	10	0.01
		(30.00%)	(60.00%)	(10.00%)	
	Control	47	44	9	0.1
		(47.00%)	(44.00%)	(9.00%)	

For the PvuII variant, the control group displayed a higher frequency of homozygous wild-type genotypes (47% vs. 30%) and a higher wild-type allele frequency (0.69 vs. 0.60) compared to the case group. While the case group deviated from Hardy-Weinberg Equilibrium (HWE) (p = 0.01), the control group remained in equilibrium (p > 0.05). Chi-square analysis revealed a significant deviation from HWE in the case group for PvuII, unlike the XbaI variant, which showed no significant deviation (Table 1). Further analysis of the PvuII variant revealed significant associations with disease risk in the dominant model (OR = 2.0692; CI: 1.1578 to 3.6980; p = 0.0141) and the over-dominant model (OR = 1.9091; CI: 1.0882 to 3.3493; p = 0.0242). These findings suggest that certain genotypes of PvuII are significantly associated with a higher risk of disease. Additionally, the allelic model (OR = 1.4839; CI: 0.9827 to 2.2406; p = 0.0605) showed a near-significant trend, indicating that the recessive allele may also contribute to disease risk (Table 2).

Table 2: Association Analysis of Gene Variants *XbaI* and *PvuII* Under Different Genetic Models

and Pvull Under Different Genetic Models							
t	Genetics	OR	CI	p-Value			
an	Model			_			
ij	1,10000						
Variant							
_							
XbaI	Recessive	1.502	0.67 to 3.33	= 0.31			
	Dominant	1.4301	0.79 to 2.57	= 0.23			
	OD	1.1277	0.64 to 1.96	= 0.67			
	Allelic	1.3109	0.87 to 1.95	= 0.18			
	HR vs HW	1.7944	0.74 to 4.3	= 0.19			
	HR vs HT	1.3365	0.58 to 3.07	= 0.49			
	HT vs HW	1.3427	0.72 to 2.48	= 0.34			
PvuII	Recessive	1.12	0.43 to 2.89	= 0.80			
	Dominant	2.0692	1.15 to 3.69	= 0.01			
	OD	1.9091	1.08 to 3.34	= 0.02			
	Allelic	1.4839	0.98 to 2.24	= 0.06			
	HR vs HW	1.7407	0.63 to 4.78	= 0.28			
	HR vs HT	0.8148	0.30 to 2.17	= 0.68			
	HT vs HW	2.1364	1.17 to 3.89	= 0.01			

Discussion

BC's high prevalence is influenced by both environmental and genetic factors, with the *ESR1* gene playing a key role in its pathogenesis. The rs2234693 (*PvuII*) and rs9340799 (*XbaI*) polymorphisms, located in intron 1 of the gene, have been linked to increased

BC susceptibility. These variations are commonly studied for their association with BC risk (Surekha et al., 2007; González-Mancha et al., 2008; Houtsma et al., 2021; Shen et al., 2006; AL-Tahhan and Refaat, 2010). This analysis aims to evaluate the relationship between these polymorphisms and BC risk in women from Haryana, representing the north Indian population.

In the present study, the *XbaI*variant showed no significant association with BC risk in women from the North Indian population. However, significant associations were observed between the *PvuII*variant and disease risk in both the dominant and overdominant models, with the allelic model indicating a near-significant trend, suggesting the potential contribution of the recessive allele to disease risk.

Several studies have explored the relationship between the XbaI and PvuII polymorphisms and BC risk, yielding varying results across different populations. For instance, Lu et al. (2005) found that the XbaI rare allele was associated with a reduced risk of BC, particularly in postmenopausal women. In contrast, the PvuII polymorphism showed no significant association with BC risk in their study population. Several other studies have also reported diverse findings related to the PvuII polymorphism. Surekha et al. (2007) found a significant association between the PvuII rare allele with increased BC risk, particularly in premenopausal women. Similarly, González-Mancha et al. (2008) suggested that the PvuII rare allele might serve as a germline risk factor for familial BC and was associated with specific tumor phenotypes, though it did not affect disease-free survival. Further research by Shen et al. (2006) observed that the PvuII and XbaI polymorphisms, possibly in linkage disequilibrium, were associated with a non-significant increase in BC risk in a Chinese cohort. In another study, AL-Tahhan and Refaat (2010) found that the PvuII polymorphism significantly increased BC risk in an Egyptian population, while the XbaI polymorphism showed no notable association.

While many studies highlight an increased risk of BC (BC) among women in various populations, some intriguing research has shown a reduced risk, prompting further exploration into the genetic factors involved. For instance, Atoum and Alzoughool (2017) found a significant association between the XbaI polymorphism and a decreased BC risk, suggesting it might act as a protective factor in the Jordanian population. Interestingly, while they did not find a direct link between the PvuII polymorphism and BC risk, a combined analysis of both PvuII and XbaI revealed a significantly reduced risk of BC, raising the possibility of a synergistic protective effect. Further adding to this complexity, Houtsma et al. (2021) uncovered that the PvuII variant was linked to improved overall survival (OS) and disease-free survival (DFS) in postmenopausal, hormone receptorpositive patients treated with exemestane. This suggests that PvuII may have not only a risk-modifying effect but also a potential prognostic role in BC outcomes. In another study, Ramalhinho et al. (2013) demonstrated

that the XbaI polymorphism was associated with a significantly reduced BC risk in Portuguese women, particularly in those carrying the homozygous and heterozygous X allele. Although PvuII was linked to a non-significantly reduced risk, the combined PvuII and XbaI polymorphisms revealed a striking reduction in BC risk in individuals. Moreover, their findings suggested a fascinating interaction between these polymorphisms, as they were found to be in linkage disequilibrium, hinting at a complex genetic interplay that could shape BC susceptibility. On the other hand, Madeira et al. (2014) uncovered a different aspect, showing that the *PvuII* polymorphism was significantly associated with an increased risk of BC, especially in cases of estrogen receptor alpha (ERa)-positive BC. Interestingly, the pp and xx genotypes were exclusively found in patients who responded to tamoxifen therapy, suggesting that the P and X alleles might not only influence cancer risk but also enhance chemotherapy responsiveness.

These diverse findings ranging from protective genetic factors to those that may increase BC risk underline the complexity of BC genetics. They spark curiosity about the interplay between different genetic variants and their potential to modify both the risk and prognosis of BC across populations. Could certain polymorphisms be shielding women from BC, while others may make them more vulnerable or even influence their response to treatment? The answers may lie in these intricate genetic interactions, waiting to be further explored.

Strengths, Limitations, and Future Perspectives

This study focuses on women from Haryana, North India, providing valuable insights into an underrepresented population. The use of PCR-RFLP ensures accurate genotyping, and the inclusion of cases and controls enhances validity. However, the small sample size (200 participants) limits generalizability, and confounding factors like environment and lifestyle were not explored. Future research should involve larger, diverse cohorts and investigate geneenvironment interactions, with longitudinal studies to establish causal links between genetic polymorphisms and breast cancer risk.

Conclusion

This study examined the *XbaI* and *PvuII* genetic variations in relation to BC risk in women from Haryana, North India. While no significant link was found for *XbaI*, the *PvuII* variation was strongly associated with increased BC risk in specific genetic models. Further research with larger cohorts is needed to confirm these findings and explore genetic and environmental contributions to BC risk.

Abbreviation

OMIM - Online Mendelian Inheritance in Man

 $\mathbf{E}\mathbf{R}\alpha$ - Estrogen Receptor Alpha

ESR1 - Estrogen Receptor 1

SNP - Single Nucleotide Polymorphism

PCR - Polymerase Chain Reaction

RFLP - Restriction Fragment Length Polymorphism

HWE - Hardy-Weinberg Equilibrium

OR - Odds Ratio

CI - Confidence Interval

BMI - Body Mass Index

OPD - Outpatient Department

IEC - Institutional Ethics Committee

Declaration

Statement of Ethics & Consent to Participate: The study was conducted per ethical standards, with approval from the Institutional Ethics Committee, MMIMSR, Mullana, Ambala (Ref: IEC/2349, 09-12-2022). Written informed consent was obtained from all participants.

Conflict of Interest Statement: No conflict of interest. **Funding Sources:** This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Data Availability Statement: All data from this study are included in the article. Further inquiries can be directed to the corresponding author.

Acknowledgments: The authors are highly thankful to the Institute of Human Genetics, University of Jammu for support in the present study.

Author Contributions: PK and SM conceptualized the study and provided supervision; SPdiagnosed the patients, IB prepared all the data; AS and PK conducted all the statistical analysis and interpretation; IB &AS drafted the manuscript, KBedited pictures and tables; SP,KB &PK edited the manuscript; PK and SM finalized the manuscript. All authors provided critical feedback on drafts and approved the final manuscript.

Reference

- Al-Eitan, L. N., Rababa'h, D. M., Alghamdi, M. A., &Khasawneh, R. H. (2019). Association between ESR1, ESR2, HER2, UGT1A4, and UGT2B7 polymorphisms and breast Cancer in Jordan: a case-control study. BMC cancer, 19, 1-10.
- Al-Tahhan, Magdy, And Doaa Refaat.
 "Association Of Estrogen Receptor A PvullAndXbal Gene Polymorphisms With BC Risk; Relation To The Age Of Menarche And Menopause." Bulletin Of Egyptian Society For Physiological Sciences 30.2 (2010): 111-124.
- 3. Atoum, M. F., & Alzoughool, F. (2017). Reduction In BC Susceptibility Due To XbaI Gene Polymorphism Of Alpha Estrogen Receptor Gene In Jordanians. BC: Targets And Therapy, 45-49.
- Chattopadhyay, S., Siddiqui, S., Akhtar, M. S., Najm, M. Z., Deo, S. V. S., Shukla, N. K., & Husain, S. A. (2014). Genetic polymorphisms of *ESR1*, ESR2, CYP17A1, and CYP19A1 and the risk of breast cancer: a case control study from North India. Tumor Biology, 35, 4517-4527.
- 5. Ghali, R. M., Al-Mutawa, M. A., Al-Ansari, A. K., Zaied, S., Bhiri, H., Mahjoub, T., &Almawi, W. Y. (2018). Differential association of *ESR1* and ESR2 gene variants with the risk of breast cancer and associated features: A case-control study. Gene, 651, 194-199.
- 6. González-Mancha1AB, R., Galán2CD, J. J., Crespo3B, C., Pérez1D, L. I., González-

- Perez2CE, A., Morón2FD, F. J., ... & Royo2AE, J. L. (2008). Analysis Of TheEralpha Germline *PvuII* Marker In BC Risk. *Med Sci Monit*, *14*(3), 142
- 7. Houtsma, D., De Groot, S., Baak-Pablo, R., Kranenbarg, E. M. K., Seynaeve, C. M., Van De Velde, C. J., ... &Gelderblom, H. (2021). The Variant T Allele Of*PvuII* In *ESR1* Gene Is A Prognostic Marker In Early BC Survival. *Scientific Reports*, 11(1), 3249.
- 8. Lu, X., Li, B., Wei, J. M., & Hua, B. (2005). The *XbaI*And*PvuII* Gene Polymorphisms Of The Estrogen Receptor Alpha Gene In Chinese Women With BC. Zhonghua Wai Ke Za Zhi [Chinese Journal Of Surgery], 43(5), 290-293.
- Madeira, K. P., Daltoé, R. D., Sirtoli, G. M., Carvalho, A. A., Rangel, L. B. A., & Silva, I. V. (2014). Estrogen Receptor Alpha (ERS1) Snps C454-397T> C (PvuII) And C454-351A> G (XbaI) Are Risk Biomarkers For BC Development. Molecular Biology Reports, 41, 5459-5466.
- Madhav, M. R., Nayagam, S. G., Biyani, K., Pandey, V., Kamal, D. G., Sabarimurugan, S., ... & Jayaraj, R. (2018). Epidemiologic analysis of BC incidence, prevalence, and mortality in India: Protocol for a systematic review and metaanalyses. *Medicine*, 97(52), e13680.
- Ramalhinho, A. C., Marques, J., Fonseca-Moutinho, J. A., & Breitenfeld, L. (2013). Genetic PolymorphimsOf Estrogen Receptor Alpha– 397 PvuII (T> C) And– 351 XbaI (A> G) In A Portuguese Population: Prevalence And Relation With BC Susceptibility. Molecular Biology Reports, 40, 5093-5103.
- Shen, Y., Li, D. K., Wu, J., Zhang, Z., & Gao, E. (2006). Joint Effects Of The CYP1A1 Mspi, Erα PvuII, And Erα XbaI Polymorphisms On The Risk Of BC: Results From A Population-Based Case-Control Study In Shanghai, China. Cancer Epidemiology Biomarkers & Prevention, 15(2), 342-347.
- 13. Sudershan, A., Mahajan, K., Panjaliya, R. K., Dhar, M. K., & Kumar, P. (2022). Algorithm for sample availability prediction in a hospital-based epidemiological study spreadsheet-based sample availability calculator. *Scientific reports*, *12*(1), 1860.
- Sudershan, A., Sheikh, J. H., Wani, S. A., Kumar, H., & Kumar, P. (2024). Polymorphisms Of Estrogen Receptor Alpha (ESRI) Rs9340799, Rs2234693, Rs1801132, And Rs2228480 And Their Association With Migraine Risk: A Meta-Analysis With Meta-Regression And Trial Sequential Analysis. The Nucleus, 1-19.
- Surekha, D., Vishnupriya, S., Rao, D. N., Sailaja, K., &Raghunadharao, D. (2007). *PvuII* Polymorphism Of Estrogen Receptor-A Gene In BC. Indian Journal Of Human Genetics, 13(3), 97.