

# https://africanjournalofbiomedicalresearch.com/index.php/AJBR

Afr. J. Biomed. Res. Vol. 27(4s) (December 2024); 6320-6328 Research Article

# Determination Of Cardiac Vector Magnitude And Angle In The 4 Quadrant Graph Using Cardiac Vector Theory

# Dr.T.Rajini Samuel<sup>1\*</sup>

¹\*Professor, Department of Biochemistry, Shri Sathya Sai Medical College and Research Institute, SBV Chennai Campus, Sri Balaji Vidyapeeth Deemed to be University, Shri Sathya Sai Nagar, Ammapettai, Thiruporur, Chengalpet District, Tamil Nadu, 603108, Phone number: 7305971317 & 9884971317, Email address: samuel.biochemistry@gmail.com & samuel.rajini@gmail.com

# \*Corresponding Author: Dr.T.Rajini Samuel

\*Professor, Department of Biochemistry, Shri Sathya Sai Medical College and Research Institute, SBV Chennai Campus, Sri Balaji Vidyapeeth Deemed to be University, Shri Sathya Sai Nagar, Ammapettai, Thiruporur, Chengalpet District, Tamil Nadu, 603108, Phone number: 7305971317 & 9884971317, Email address: samuel.biochemistry@gmail.com & samuel.rajini@gmail.com

#### **ABSTRACT**

**INTRODUCTION:** The angle determination in ECG is done using the hex-axial reference system with the changes observed in two leads namely Lead I and aVF or using three leads namely Lead I, Lead II and aVF. The angle determination is very difficult in certain conditions. Cardiac vector theory helps in the understanding and determination of cardiac vector magnitude and angle in ECG interpretation.

**AIM:** To derive and calculate the cardiac vector magnitude and cardiac vector angle and to correlate with the lead vector in all the 4 quadrants of the hex-axial reference system.

**MATERIALS AND METHODS:** The cardiac vector theory derived using the projection of heart vector onto the lead vector is applied in detail in different quadrants of the 4 quadrant graph to derive the cardiac vector angle and magnitude.

**RESULTS:** The determination of magnitude and angle(axis) of Cardiac vector was cited with 11 examples. Cardiac vector magnitude and angle determination in each of the 4 quadrant was clearly depicted using graphical figures.

**CONCLUSION:** The cardiac axis calculation remains an arduous and challenging task. Therefore, this detailed approach using vector principles will serve as an important guide to the medical students to understand and analyze the cardiac axis in various clinical conditions.

KEY WORDS: ECG, Axis, Angle, Magnitude, Cardiac Vector Theory

\*Author for correspondence: Email: samuel.biochemistry@gmail.com & samuel.rajini@gmail.com

Received: 30/11/2024 Accepted: 02/12/2024

DOI: https://doi.org/10.53555/AJBR.v27i4S.4776

### © 2024 The Author(s).

This article has been published under the terms of Creative Commons Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0), which permits noncommercial unrestricted use, distribution, and reproduction in any medium, provided that the following statement is provided. "This article has been published in the African Journal of Biomedical Research"

#### INTRODUCTION:

The **angle determination** in **ECG** is done using the changes observed in **two leads** namely Lead I and aVF or using **three lead** analysis ( Lead I, Lead II and aVF).

The angle can be determined using **grant method** by observing and identifying the **iso-electric lead** with the help of vector principles (Leo Shamroth 2010, Atul Luthra 2004, Hurst JW 2002). The **cardiac vector** 

Afr. J. Biomed. Res. Vol. 27, No.4s (December) 2024

Dr. T. Raiini Samuel

**theory** can be easily applied to explain these concepts. If the **heart vector** is **perpendicular** to a particular lead, then the net voltage recorded in that particular lead will be zero. If the heart vector is parallel to a particular lead, then the net voltage recorded in that particular lead will be maximum (Rajini Samuel T 2012, Rajini Samuel T 2018). If the heart vector is perpendicular to aVF or parallel to Lead I, then the angle will be zero degree. If the heart vector is parallel to aVF or perpendicular to Lead I, then the angle will be 90° (Rajini Samuel T 2018, Rajini Samuel T 2021). Using the hex-axial reference system, the angle can be analyzed but it requires thorough knowledge of the lead orientation system of ECG and also difficult to analyze angle in all cases. But the trigonometric formula is very easy to apply and accurately calculate the cardiac vector angle in various conditions(Rajini Samuel T 2018, Rajini Samuel T 2023). The cardiac vector theory derived using the projection of heart vector onto the lead vector helps to clearly understand the derivation of cardiac vector angle and to correlate the changes in cardiac vector angle in different quadrants.

Cardiac Vector theory states that voltage recorded in a particular lead is the result of dot product between Cardiac Vector (electrical field vector in volt/metre) Lead Vector (measured in metre). Hence voltage(measured in volt) is a scalar quantity (Rajini Samuel T 2018, Rajini Samuel T 2023). The voltage recorded in a particular lead depends on both the magnitude and direction of cardiac vector and only on the direction of the lead vector. In ECG graph paper, each small square is 1 mm and each large square is

5 small squares. 1 millivolt signal from the standardized ECG machine produces 10 millimetre vertical deflection. Each small square on the vertical axis represents 0.1 mV and each large square represents 0.5 mV (Leo Shamroth 2010, Atul Luthra 2004).

This research study discuss in detail the derivation and calculation of cardiac vector magnitude and angle and its correlation with the lead vector in all the 4 quadrants of the hex-axial reference system.

#### MATERIALS AND METHODS:

#### Right angled triangle:

In a right angled triangle (one of the angle of the triangle is 90°), the side opposite to 90° is hypotenuse ( shown in **figure 1**). The side adjacent to the angle  $\alpha$  is called adjacent side and the side opposite to the angle α is called opposite side (Rajini Samuel T 2018). According to Pythagoras theorem, the square on the hypotenuse is equal to the sum of the squares on the other two sides (adjacent and opposite side).

#### In trigonometry,

Sin  $\alpha$  = opposite side / hypotenuse

Cos  $\alpha$  =adjacent side / hypotenuse

Tan  $\alpha = \sin \alpha / \cos \alpha$ 

Tan  $\alpha$  = opposite side / adjacent side

[where  $0^{\circ} < A < 90^{\circ}$ ]

The values of Sin, Cos and Tan angle are clearly shown in table 1. Sin angle value is positive in 1st and 2nd quadrant. Cos angle value is positive in 1st and 4th quadrant. Cos angle value is negative for obtuse angle (  $90^{\circ} < \theta < 180^{\circ}$ ). Tan angle value is positive in 1st and 3<sup>rd</sup> quadrant and negative in 2<sup>nd</sup> and 4<sup>th</sup> quadrant.

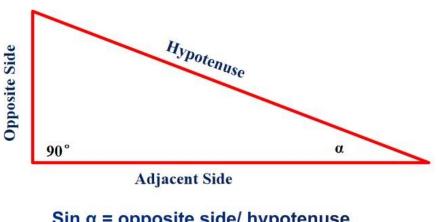


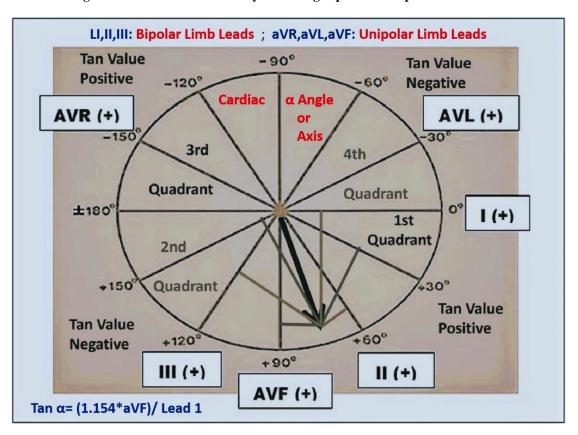

Figure 1: Trigonometry in Right angled Triangle

Sin  $\alpha$  = opposite side/ hypotenuse

Cos  $\alpha$  = adjacent side/hypotenuse

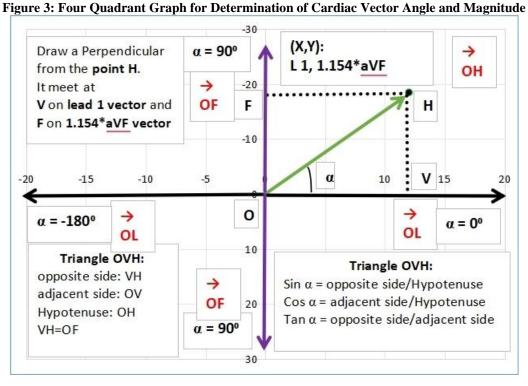
Tan  $\alpha = \sin \alpha / \cos \alpha$ 

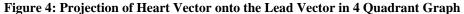
Tan  $\alpha$  = opposite side/adjacent side

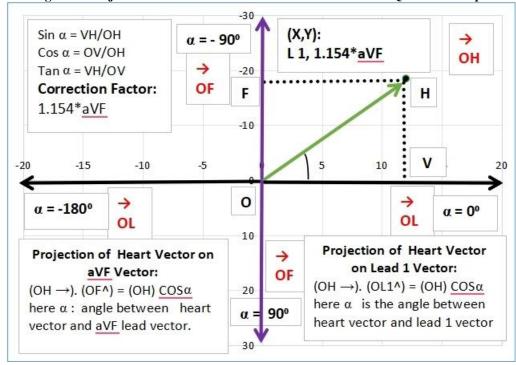

[where 0° < A < 90°]

| Angle Values | 00 | 30°            | 45°            | 60°            | 90°         |
|--------------|----|----------------|----------------|----------------|-------------|
| Sin angle    | 0  | 0.5 or         | 0.707 or       | 0.866 or       | 1           |
| Values       |    | [1/2]          | $[1/\sqrt{2}]$ | $[\sqrt{3}/2]$ |             |
| Cos angle    | 1  | 0.866          | or 0.707 or    | 0.5 or         | 0           |
| Values       |    | $[\sqrt{3}/2]$ | $[1/\sqrt{2}]$ | [1/2]          |             |
| Tan angle    | 0  | $1/\sqrt{3}$   | 1              | $\sqrt{3}$     | Infinity    |
| Values       |    | (0.577)        |                | (1.732)        | (undefined) |

The hex-axial reference system is constructed by the combination of the bipolar limb leads (LI, LII & LIII) and unipolar limb leads (aVR, aVL & aVF) which is clearly shown in **figure 2**. The **bipolar limb leads** LI(0°), LII(60°), LIII(120°) and **unipolar limb leads** 


aVR(-150°), aVL(-30°), aVF(90°) are forming **two electrical equilateral triangles** in the hex-axial reference system. The heart in zero potential is located at the centre of the hex-axial reference system (Rajini Samuel T 2012, Rajini Samuel T 2018).


Figure 2: Hex-axial Reference System using Bipolar & Unipolar Limb Leads




Triangle OHV is a right angled triangle. The point O denotes the origin (zero point). Heart vector  $\mathbf{OH} \rightarrow \mathbf{is}$  projected on to the lead vector  $(\mathbf{O} \ \mathbf{L} \rightarrow)$ . A perpendicular line drawn from the point H meets the point V on the lead vector (shown in figure 3 and 4). The lead vector denotes the orientation of the electrode. The magnitude of the heart vector[OH] can be

determined using the application of pythagoras theorem. The cardiac angle (axis) is the angle between the cardiac vector and the lead I vector (oriented at  $0^{\circ}$ ). The cardiac angle can be calculated using the values of Sin $\alpha$ , Cos  $\alpha$  and Tan  $\alpha$  values (Rajini Samuel T 2012, Rajini Samuel T 2018, Rajini Samuel T 2021, Rajini Samuel T 2023).







The magnitude of the cardiac vector from the ECG graph can be easily calculated using the voltages recorded in the Bipolar limb lead LI and unipolar limb lead aVF by the application of pythagoras theorem.

 $[OH^{\rightarrow}]^2 = LI^2 + (1.154*aVF)^2$ 

 $[\mathbf{OH}^{\rightarrow}]$  = Square Root of  $(LI^2 + (1.154*aVF)^2)$ 

The unipolar and bipolar limb leads have different resistance. So, the correction factor of 1.154 is to be applied to compare them (Novosel D et al.,1999, Rajini Samuel T 2012, Samuel TR 2024). The magnitude of

the **heart vector** is represented by the **square root** of  $(LI^2 + (1.154*aVF)^2).$ 

Cosa=

Voltage recorded in lead I / Magnitude of Heart vector  $Cos\alpha = Lead I / (Square Root of (LI^2 + (1.154*aVF)^2)$  $Sin\alpha =$ 

Voltage recorded in aVF/ Magnitude of Heart vector  $Sin\alpha =$ 

1.154 \*aVF/ (Square Root of  $(LI^2 + (1.154*aVF)^2)$ Tan  $\alpha = \sin \alpha / \cos \alpha$ 

The formulae to calculate the angle determination in ECG is as follows.

#### Tan $\alpha$ = (1.154\*aVF)/ Lead I

#### **RESULTS:**

Cardiac vector magnitude and angle determination was done by applying the cardiac vector theory using trigonometric mathematics. The relationship of the voltages of the various limb leads were utilized to derive the **voltages** measured in **each leads** which are shown in **mm**.

The determination of magnitude and angle(axis) of Cardiac Vector is clearly cited with 11 examples in the **table 2**. Voltages recorded (according to Cardiac Vector Theory) in X and Y coordinates (X axis: Lead I

and Y axis: 1.154 \*aVF) in the 4 Quadrant hex-axial reference system is clearly depicted with examples in the figure 5. Cardiac α angle determination and cardiac vector magnitude [OH] determination using the voltages recorded in X and Y coordinates (X axis: Lead I and Y axis: 1.154 \*aVF) in the 4 Quadrant graph is clearly depicted in figure 6 and figure 7 respectively. The cardiac vector magnitude and angle determination in 1<sup>st</sup>, 2<sup>nd</sup>, 3<sup>rd</sup> and 4<sup>th</sup> quadrant of the hex-axial reference system is individually shown in figure 8,9,10 and 11 respectively for detailed understanding and better clarity.

Table 2: Determination of magnitude and angle(axis) of Cardiac Vector using voltages measured in mm in ECG

| S.NO                                                                         | Lead 1 | aVF | 1.154*aVF | [OH <sup>→</sup> ] <sup>2</sup> | [OH→] | α Angle                        |  |  |  |
|------------------------------------------------------------------------------|--------|-----|-----------|---------------------------------|-------|--------------------------------|--|--|--|
| 1st Quadrant : Left Lower Quadrant in Hex-axial Reference System             |        |     |           |                                 |       |                                |  |  |  |
| 1                                                                            | 14     | 7.5 | 8.655     | 270.91                          | 16.46 | 31.72°                         |  |  |  |
| 2                                                                            | 8      | 10  | 11.54     | 197.17                          | 14.04 | 55.27°                         |  |  |  |
| 3                                                                            | 4      | 18  | 20.77     | 447.48                          | 21.15 | 79.10°                         |  |  |  |
| 2 <sup>nd</sup> Quadrant: Right Lower Quadrant in Hex-axial Reference System |        |     |           |                                 |       |                                |  |  |  |
|                                                                              |        |     |           |                                 |       | 180° - 67.58°                  |  |  |  |
| 1                                                                            | -10    | 21  | 24.23     | 687.29                          | 26.22 | $= 112.42^{\circ}$             |  |  |  |
|                                                                              |        |     |           |                                 |       | 180° - 24.17°                  |  |  |  |
| 2                                                                            | -18    | 7   | 8.08      | 389.25                          | 19.73 | =155.83°                       |  |  |  |
| 3rd Quadrant: Right Upper Quadrant in Hex-axial Reference System             |        |     |           |                                 |       |                                |  |  |  |
|                                                                              |        |     |           |                                 |       | $-180^{\circ} + 44.69^{\circ}$ |  |  |  |
| 1                                                                            | -14    | -12 | -13.85    | 387.77                          | 19.69 | = -135.31°                     |  |  |  |
|                                                                              |        |     |           |                                 |       | $-180^{\circ} + 63.18^{\circ}$ |  |  |  |
| 2                                                                            | -10.5  | -18 | -20.77    | 541.73                          | 23.28 | $=-116.82^{\circ}$             |  |  |  |
| 4th Quadrant: Left Upper Quadrant in Hex-axial Reference System              |        |     |           |                                 |       |                                |  |  |  |
| 1                                                                            | 12     | -16 | -18.464   | 484.92                          | 22.02 | - 56.98°                       |  |  |  |
| 2                                                                            | 6      | -20 | -23.08    | 568.69                          | 23.85 | - 75.43°                       |  |  |  |
| Cardiac Vector Perpendicular to Lead I Vector                                |        |     |           |                                 |       |                                |  |  |  |
| 1                                                                            | 0      | -12 | -13.85    | 191.77                          | 13.85 | - 90°                          |  |  |  |
| 2                                                                            | 0      | 15  | 17.31     | 299.64                          | 17.31 | 90°                            |  |  |  |

Figure 5: Voltages Recorded (in mm in ECG) in X and Y coordinates (Lead I VS 1.154 \*aVF) of 4 Quadrant Graph with 11 examples

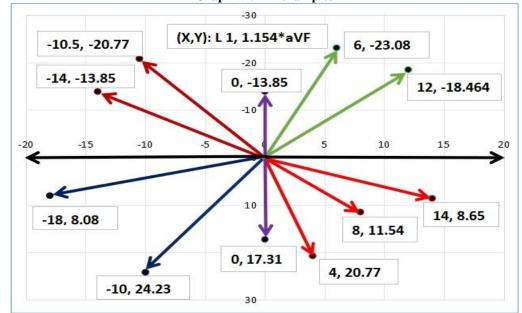



Figure 6: Cardiac  $\alpha$  Angle Determination using voltages recorded in X and Y coordinates (Lead I VS 1.154 \*aVF) of 4 Quadrant Graph with 11 examples

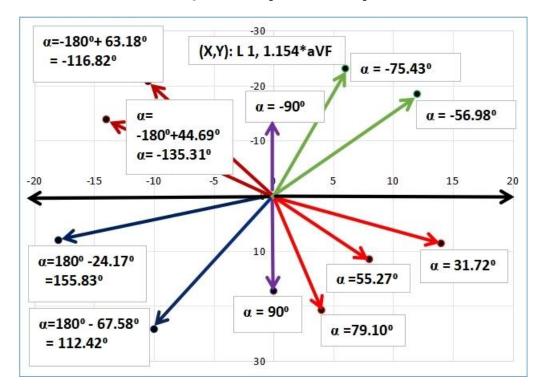
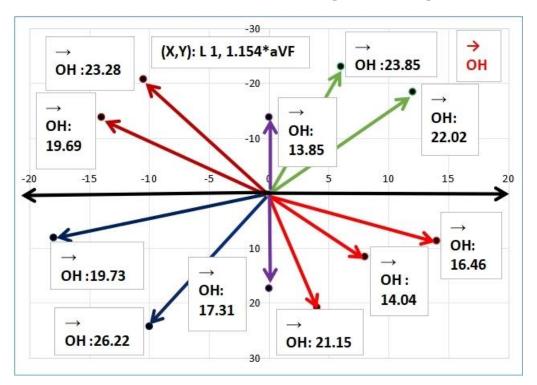




Figure 7: Cardiac Vector Magnitude [OH] determination using voltages recorded in X and Y coordinates (Lead I VS 1.154 \*aVF) of 4 Quadrant Graph with 11 examples



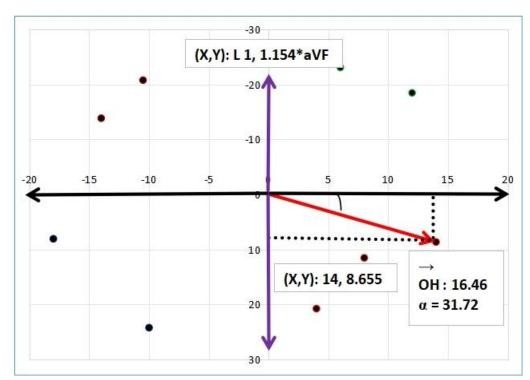
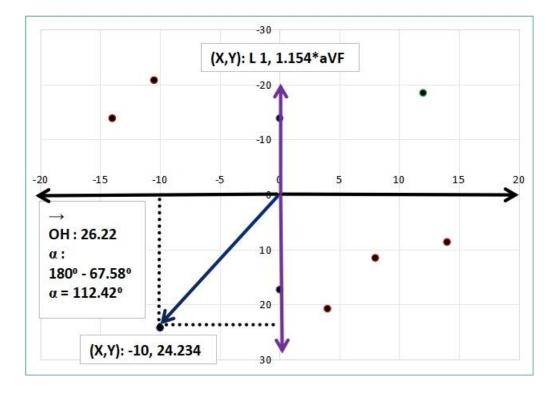




Figure 8: Cardiac Vector Magnitude and Angle determination in 1st Quadrant





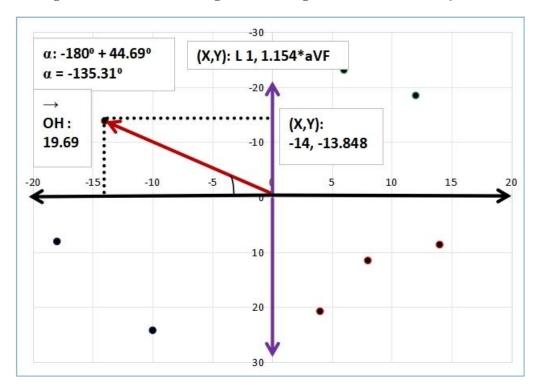
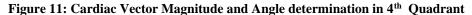
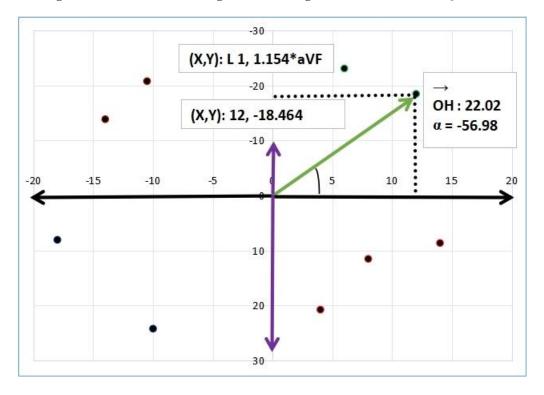





Figure 10: Cardiac Vector Magnitude and Angle determination in 3<sup>rd</sup> Quadrant





# **DISCUSSION:**

The **cardiac vector theory** can be applied to calculate the cardiac vector angle and magnitude. The voltage recorded in Lead I depends on the magnitude of cardiac vector and the angle between heart vector and lead I vector(0°). The voltage recorded in aVF lead depends on the magnitude of cardiac vector and the angle between heart vector and aVF lead vector(90°).

Similarly the voltage recorded in any of the bipolar limb leads [LI(0°), LII(60°),LIII(120°)] and any of the unipolar limb leads [aVR(-150°),aVL(-30°) and aVF(90°)] can be explained using the magnitude of the heart vector and the angle between heart vector with that particular lead vector (Rajini Samuel T 2024). The unipolar and bipolar limb leads have different

resistance. So, the **correction factor** of **1.154** is to be applied (**multiplied**) to **each unipolar limb lead voltages** to compare them.

The magnitude of the heart vector is determined using the application of pythagoras theorem. In the **X coordinate** the **voltage (vertical deflection in mm in ECG)** recorded in **lead 1** is used and in **Y coordinate 1.154 \*aVF** is used. The angle can be determined using either  $\text{Sin}\alpha$ ,  $\text{Cos}\alpha$  or  $\text{Tan}\alpha$  and all will give the same results only. The calculation of cardiac angle using  $\sin \alpha$  and  $\cos \alpha$  involves the magnitude of heart vector. So only if the heart vector magnitude is calculated, the cardiac angle can be determined using  $\sin \alpha$  and  $\cos \alpha$ . But if  $\text{Tan}\alpha$  ( $\text{Tan}\alpha = \sin \alpha / \cos \alpha$ ) is used, then only the voltage recorded in lead 1 and 1.154 \*aVF is sufficient to calculate the cardiac angle.

The cardiac vector angle is the angle between heart vector and the positive axis of lead vector LI(0°). In the  $\mathbf{1}^{st}$  Quadrant, both lead 1 (x axis) and 1.154 \*aVF (y axis) are positive. So the angle calculated using **Tana directly gives** the cardiac angle value (shown in **figure 8**). In the  $\mathbf{2}^{nd}$  quadrant, 1.154 \*aVF( y axis) is positive but the lead 1 (x axis) is negative and the orientation of LI is 180°. So the angle calculated using Tana gives the heart vector oriented with the negative axis of Lead 1. So it has to be **subtracted from 180°** to get the cardiac vector angle which is the angle between the **heart vector** and the **positive axis** of **lead 1 vector**(shown in **figure 9**).

In the 3<sup>rd</sup> quadrant, both lead 1 (x axis) and 1.154 \*aVF( y axis) are negative. The angle calculated using Tanα gives the heart vector oriented with the negative axis of Lead 1. The angle in this quadrant can be given in two forms either as positive (between 180° and 270°) or in the form of negative (between -90° and -180°). The positive form can be directly given by the addition of 180° to the angle calculated using Tana. But in ECG, in routine clinical teaching and practice, this quadrant is given in negative angle values. The negative form can be given by the addition of -180° to the angle calculated using Tan  $\alpha$ . The cardiac vector angle is the angle between the heart vector and the positive axis of lead 1 vector which is not changed in both the calculations, so both representation is correct and accurate(shown in figure 10). In the 4th quadrant, lead 1 (x axis) is positive and 1.154 \*aVF( y axis) is negative and the angle is between  $0^{\circ}$  and  $-90^{\circ}$ . So the angle calculated using Tana is directly represented in negative value (shown in figure 11).

The normal QRS vector is oriented from  $-30^{\circ}$  to  $90^{\circ}$  and the normal T wave vector is oriented between  $0^{\circ}$  and  $90^{\circ}$ . The normal QRS -T angle does not usually exceed  $60^{\circ}$  in the frontal plane in the hex-axial reference system (Leo Shamroth 2010). The T wave vector should be analyzed always with QRS vector. ST vector denote the direction of the current of injury. The understanding of the derivation and calculation of cardiac vector magnitude and angle in each of the 4 quadrant of the hex-axial reference system plays a significant role in the determination of cardiac axis.

#### **CONCLUSION:**

Cardiac vector theory helps in the understanding and determination of cardiac vector magnitude and angle in ECG interpretation. The cardiac axis calculation remains an arduous and challenging task. Therefore, this detailed approach using vector principles will serve as an important guide to the medical students to understand and analyze the cardiac axis in various clinical conditions.

Source(s) of support: NIL

Acknowledgement: NIL

#### **REFERENCES:**

- 1. Leo Shamroth. An introduction to electro cardiography.7TH edition. Blackwell science Ltd, 2010, pp:7-172
- Atul Luthra ECG Made Easy. Third Edition. Jaypee Brothers Medical Publishers. 2004
- 3. Hurst JW.The use of the Grant method to interpret electrocardiograms.J Am Coll Cardiol. 2002;39(11):1878-80.
- 4. Rajini Samuel T. What to the world Einthoven talking about?, Journal of Pharmaceutical and Biomedical Sciences(JPBMS).2012; 23(23):1-7
- Rajini Samuel T. Formulation and Clinical Application of Cardiac Vector Hypotheses in ECG Interpretation Using Vector Physics Principle.EJPMR. 2018;5(11):523-536
- 6. Rajini Samuel. Application of Cardiac Vector Theory In ECG Interpretation, PARIPEX Indian Journal of Research. 2021;10(10): 30-32
- 7. Rajini Samuel T. Unlocking the Cardiac Vector Theory and Einthoven Equilateral Triangle Model for an Efficient Teaching Tool in ECG Interpretation.ARC Journal of Cardiology.2023;8(1):12-22
- 8. Novosel D, Noll G, Luscher TF. Corrected formula for the calculation of the electrical heart axis. Croat Med J.1999;40(1):77-79.
- Samuel TR. Angle Determination in ECG Using Trigonometric Formula. Adv Nursing Patient Care Int J. 2024;7(1):180084
- 10. Rajini Samuel.Stepwise Approach In ECG Interpretation Using Vector Concepts Involved In Cardiac Vector Theory.African Journal of Biomedical Research.2024; 27(3S):3389 -3397