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Abstract

Objective: Diabetic Retinopathy (DR) is the leading cause of preventable blindness in adults. It is the leading cause of
vision loss, in people aged 50 and above. Global prevalence is projected to rise to 129.84 million by 2030 and 160.5
million by 2045. Effective management relies on regular screening and prompt intervention. With increasing demands,
automated screening methods using deep learning techniques offer enhanced diagnostic accuracy and timely intervention.
This study aimed to address the increasing prevalence of DR and the demand for automated screening methods, leveraging
deep learning techniques to enhance diagnostic accuracy and facilitate timely intervention.

Methods: In this research, a new Convolutional Neural Network (CNN) architecture is tested with the goal of accurately
detecting different stages of DR. A thorough assessment of innovative CNN design, is done using various metrics such as
Accuracy, Precision, Recall, and F1 score.

Results: The Experimental findings indicate that the proposed CNN model surpasses existing research efforts,
demonstrating its superiority in accurately predicting stages of DR. With impressive metrics such as 95% accuracy, 93%
precision, 94% recall, and a 93% F1 score, this novel CNN model showcases its efficacy in precisely assessing the severity
of DR and the integration of batch normalization and dropout layers into the architecture aids in mitigating overfitting,
further enhancing the model's performance and generalization capabilities.

Conclusion: In conclusion, the comprehensive experimentation and evaluation have established the robustness and
scalability of the model, offering promising prospects for improved DR screening in clinical settings. The results
emphasize the transformative potential of innovative deep learning architectures in revolutionizing DR diagnosis and
management. With these advancements, the future of DR care can be predicted to improve patient outcomes and preserve
vision.
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Introduction

Diabetes mellitus, a significant public health concern
characterized by chronic hyperglycemia, has surged in both
developed and developing Nations. As a result, it can lead to a
condition called DR, which can cause permanent blindness in
severe cases. This condition mainly arises from damage to the
blood vessels that supply nutrients to the retina, a tissue
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sensitive to light [1]. According to the World Health
Organization (WHO), around 382 million people had DR in
2013, and this number is expected to reach 592 million by 2025
[2]. Additionally, as per the International Diabetes Federation's
2021 report, there are currently 537 million cases of diabetes,
projected to increase to 643 million by 2030 and 783 million
by 2045 [3]. Furthermore, DR is common among certain
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groups of patients, with approximately 40% of type Il diabetic
patients and 86% of type | diabetic patients. Numerous clinical
studies have demonstrated that prompt treatment and effective
blood sugar management can mitigate the associated risks of
DR [4].

In DR, lesions refer to abnormalities or changes in the retina.
These lesions include:

1. Microaneurysms: Small bulges in the blood vessels of the
retina.

2. Hemorrhages: Leakage of blood from weakened blood
vessels into the retina.

3. Exudates: Deposits of fats and proteins leaking from
damaged blood vessels.

These lesions can be observed during fundus examination
using techniques such as fundus photography or fluorescein
angiography, and they play a crucial role in assessing the
severity of DR and guiding treatment decisions [5]. The
primary aim of DR classification is to identify and grade the
severity of the disease based on the International clinical DR
disease severity scale. Figure 1 displays retinal images
exhibiting various levels of severity in DR.

NORMAL

IODERATE

$ ¢
Fig.1 DR Stages

Thus, regular eye screening is imperative to safeguard vision
and prevent blindness in individuals with diabetes. In clinical
settings, Ophthalmologists utilize fundus photography to
examine the retina for abnormalities and evaluate the severity
of DR. However, manually inspecting fundus images requires
expertise and effort to ensure effective DR screening.
Therefore, an automated DR grading system is essential for
early disease diagnosis which analyzes retinal images
efficiently, making screening accessible, reducing the burden
on healthcare professionals, and utilizing Al advancements for
accurate diagnosis, ultimately preventing vision loss. The
standard grading protocol for assessing the severity of DR can
be classified into four stages: No DR (Class-1), Mild DR
(Class-2), Moderate DR (Class-3), and Severe DR (Class-4).

Artificial Intelligence (Al) holds promise in aiding primary
Ophthalmologists in diagnosis by leveraging comprehensive
medical data, thus introducing novel strategies to enhance the
diagnostic and treatment standards for eye diseases in primary
healthcare facilities [6]. The integration of Al with
ophthalmological medical practices aims to address the
practical requirements of a considerable patient population
afflicted with fundus diseases. Traditional image feature
extraction methods rely heavily on researchers' prior
knowledge, posing significant limitations [7]. However, in
recent years, the rapid advancements in deep learning models
within the realm of computer vision have substantially
outperformed  traditional  approaches. Of particular
significance is the CNN model, renowned for its robust
representation capabilities, which mitigate the drawbacks
associated with conventional feature extraction methods [8].
Challenges persist in obtaining adequate authentic fundus
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images, especially concerning rare fundus diseases.
Furthermore, with limited data available and the presence of
inherent image noise, training a single model to attain optimal
accuracy in disease detection becomes challenging [9].
Considering the existing challenges, the Novel CNN has
undergone comprehensive design and optimization. This work
is notable for its comprehensive analysis and refinement of a
CNN architecture designed specifically to increase the
accuracy and efficiency of classifying different stages of DR.
This architectural innovation could involve novel layer
topologies, activation functions, connection patterns, that
enhance the network’s ability to learn.

This paper is structured as follows: The second section begins
by introducing the related works. In the third section, a detailed
explanation of the materials and methods utilized in this work
is provided. The experimental results are then presented and
discussed in the fourth section. Finally, the fifth section offers
conclusions.

Related Works

Currently, CNN models are extensively utilized in
classification tasks, yielding higher accuracy rates. This
literature review discusses how CNN models have been
employed in identifying DR stages. The concept of Al is
introduced in 1956 [10]. Shortly after, Arthur Samuel proposed
machine learning (ML) in 1959, emphasizing the importance
of ML's capacity to acquire statistical techniques without
explicit programming. Deep learning (DL) emerged as a subset
of ML, predominantly employing multi-layer neural networks.
Among DL models, CNN stand out for image processing,
comprising convolutional layers, pooling layers, and fully
connected layers. Widely recognized CNN architectures
include AlexNet, VGGNet, Inception V1-V4, ResNet, and
DenseNet. These CNN models are trained end-to-end on
labeled image datasets, enhancing accuracy by adjusting
parameters through error backpropagation algorithms based on
predefined objective functions. Another significant ML
technique is transfer learning, wherein a model is initially
trained in a source domain, and then fine-tuned in a target
domain. This approach enables effective learning with good
generalization capabilities, particularly beneficial for domains
with limited data. DL offers a key advantage over traditional
ML by automatically learning diverse levels of semantic
feature representations from large-scale datasets.

In [11], the utilization of GoogleNet, ResNet, DenseNet, and
VGG-16, is emphasized followed by a comparative analysis to
determine the most optimized variant. Since all transfer
learning networks are extensively pre-trained, the dataset
necessary for implementation is significantly reduced.
Initially, all fundus images are pre-processed and resized to
224 x 224 pixels before being input into the subsequent layers.
Upon comparison, it is noted that the Inception model achieved
the highest accuracy, reaching 82 percent. Similarly, the
approach described in [12] is focused on assessing the quality
of fundus images during their acquisition process. It employs
a Deep CNN (DCNN) architecture comprising five
convolutional layers, two fully connected layers, and a binary
classification layer, trained to automatically evaluate image
quality. The initial convolutional layer of the DCNN is
composed of 96 filters sized 11 x 11, followed by 256 filters in
the second layer, 384 filters in both the third and fourth layers
and 256 filters in the final layer. The activation size of the first
and last fully connected layers is 4096 filters, resulting in a
final output fully connected layer producing a 4096-
dimensional image. In addition to this in [13], a comparison
between the InceptionVV3 and Xception architectures is
conducted to classify DR into two categories: DR or No DR,
utilizing the Waggle dataset. The researchers utilized the entire
dataset comprising 35, 126 images, allocating 20% of the
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images for testing the algorithm's performance. Fine-tuning the
last two blocks of the two architectures, they compared two
optimizers with varying learning rates: stochastic gradient
descent and Adam. Image augmentation techniques such as
horizontal and vertical flipping, as well as shifting and rotating
the images, were employed to enhance the model's robustness.
The evaluation metric used to gauge the architectures'
performance was accuracy. The reported accuracy results were
87.12% for the InceptionV3 architecture and 74.49% for
Xception.

Moreover, in [14] an ensemble CNN architecture is introduced
aimed at improving the efficiency of classification. Initially,
they identified the most effective CNN model from a selection
of eight architectures, namely InceptionResNetV2,
MobileNetVV2, DenseNet201, Xception, ResNet152V2,
NASNetLarge, VGG16, and VGG19. Subsequently, data
augmentation techniques such as rotation, width shift, and
height shift were applied during the training phase of the CNN
models. Thirdly, an ensemble CNN architecture was
constructed using the three CNN models identified in the first
step. For the ensemble learning approach, they proposed the
weighted average method, and consequently, suggested the use
of a grid-search method to optimize the weighted parameters.
Experimental results demonstrated that the ensemble CNN
architecture achieved an accuracy of 92.80%. On the same
note, in [15] an ensemble learning is proposed which offers a
solution to the limitations of deep learning by making
predictions through multiple models instead of relying on a
single model. Their experiment demonstrated promising
results, achieving an accuracy of 95%. Hence this work aims
to leverage a Novel CNN architecture for DR stage
classification, with the objective of enhancing the accuracy of
the model.

Materials and Methods

The proposed methodology aimed at constructing a system for
the automated detection of DR diseases. Hence a customized
neural network is constructed via training from scratch.
Consequently, the detailed architecture of the network along
with the specific implementation steps of the framework is
elaborated below.

Novel CNN Architecture

CNN has achieved remarkable success in the field of fundus
images due to its powerful feature learning ability. Neural
networks are computational models formed by connecting
simple computational units, called neurons, in specific
patterns. They can, in principle, mimic the behaviours of any
given function if there are enough neurons. CNNs represent a
special type of neural network proposed by LeCun in 1990
[16]. Due to their superior performance in image-oriented
tasks, they have become the mainstream model for image-
related tasks. Generally, CNN layers can be classified into two
categories: primary layers and secondary layers. The primary
layers constitute the main components of the CNN and include

convolution layers, activation layers, pooling layers, flatten
layers, and dense layers. Secondary layers are optional layers
that can be added to enhance CNNs' robustness against
overfitting and increase their generalizability. These include
dropout layers, batch normalization layers, and regularization
layers [17].

The Novel CNN Architecture is structured with careful
consideration of various hyperparameters to facilitate effective
classification of DR Stages.

In the literature [24], the CNN architecture was observed to
resemble a modified version of VGG-19. This modification
entailed the addition of two convolutional layers, each
followed by rectified linear units, inserted into the middle two
stages. Furthermore, the final fully connected layer, originally
comprised of 1000 neurons, was substituted with a three-
neuron layer. The output from the five stages of convolutional
layers was subsequently directed into a sequence of two fully
connected layers, each containing 4096 neurons. For non-
linear classification, the last fully connected layer featured 3
neurons. Additionally, a dropout layer was implemented on the
outputs of the initial two fully connected layers, resulting in the
dropping of 50% of the outputs. This dropout mechanism
aimed to further mitigate overfitting and enhance the
robustness of the architecture.

In reference to the current research, a CNN architecture is
proposed, which begins with a convolutional layer that
employs 32 filters of size 3x3, allowing the input data to
undergo spatial convolution while maintaining dimensions
through 'same' padding and a stride of 1 as shown in Figure 2.

“) convzn @ BatchNormalization il MaxPaoling20 (i Dropout i Fiatten

) Dense
Fig.2 Novel CNN Architecture

Batch normalization is then applied to standardize activations,
thereby enhancing the stability and speed of training.
Subsequently, max pooling with a 2x2 window and a stride of
2 is utilized to reduce spatial dimensions, aiding in feature
extraction while minimizing computational load. Following
this, a dropout layer is introduced, strategically positioned
after the first convolutional block to prevent overfitting and
improve generalization. The detailed summary of the Novel
CNN Architecture is provided in Table 1.

Table 1 The Layers and the Model Parameters used in the Novel CNN Architecture

S.No. Layer Model Parameters
1 Convolutional Filters: 32, Kernel Size: 3x3, Strides: 1, Padding: 'same'
2 Batch Normalization -
3 Max Pooling Pool Size: 2x2, Strides: 2, Padding: 'same’
4 Dropout Rate: 0.1 (after the first convolutional block)
5 Convolutional Filters: 64, Kernel Size: 3x3, Strides: 1, Padding: 'same’
6 Batch Normalization -
7 Max Pooling Pool Size: 2x2, Strides: 2, Padding: 'same'
8 Convolutional Filters: 64, Kernel Size: 3x3, Strides: 1, Padding: 'same’
9 Batch Normalization -
10 Max Pooling Pool Size: 2x2, Strides: 2, Padding: 'same'
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11 Convolutional Filters: 128, Kernel Size: 3x3, Strides: 1, Padding: 'same’
12 Dropout Rate: 0.2 (after the fourth convolutional block)

13 Batch Normalization -

14 Max Pooling Pool Size: 2x2, Strides: 2, Padding: 'same'

15 Convolutional Filters: 256, Kernel Size: 3x3, Strides: 1, Padding: 'same’
16 Dropout Rate: 0.2 (after the fifth convolutional block)

17 Batch Normalization -

18 Max Pooling Pool Size: 2x2, Strides: 2, Padding: 'same'

19 Fully Connected Units: 128, Activation: ReLU

20 Dropout Rate: 0.2

21 Fully Connected Units: 4, Activation: Softmax

The architecture maintains a consistent approach throughout
its design, utilizing a series of convolutional blocks. These
blocks are pivotal in processing the input data, gradually
expanding the complexity of feature extraction by
incrementally increasing the number of filters employed. This
progressive augmentation, first to 64 filters and subsequently
to 128, allows for a more subtle understanding of the
underlying features present in the dataset.

To ensure the stability and prevent the model from overfitting
to the training data, batch normalization and dropout layers are
strategically integrated after each convolutional block. Batch
normalization standardizes the inputs to each layer, making the
optimization process more efficient and reducing the
likelihood of the model becoming overly sensitive to small
changes in the input data. Dropout layers, on the other hand,
temporarily deactivate a proportion of neurons during training,
preventing them from becoming overly reliant on specific
features and enhancing the generalization capability of the
model.

Once the data has been processed through the convolutional
layers and pooling operations, it undergoes flattening to
transform the multidimensional feature maps into a format
suitable for input into fully connected layers. These dense
layers serve as the core of the model, leveraging their ability to
capture complex patterns within the data. The initial dense
layer with 128 units, employs Rectified Linear Unit (ReLU)
activation to introduce non-linearity into the model. This
activation function facilitates the model's ability to capture
complex, nonlinear state present in the data, enhancing its
capacity to learn and generalize effectively.

A challenging aspect of the design is the deliberate elevation
of the dropout rates to 20% after the fourth and fifth
convolutional blocks. This adjustment is aimed at further
mitigating overfitting while retaining crucial features
necessary for accurate classification. By intermittently
dropping out a higher proportion of neurons at these stages, the
model is encouraged to focus on the most salient features
present in the data, thus promoting better generalization to
unseen data.

Finally, the architecture terminate in a dense layer comprising
4 units, employing softmax activation to produce output
probabilities for the classification task. These probabilities
represent the model's assurance in assigning input data to one
of the four target classes, providing valuable insights into the
model's decision-making process and enabling effective
categorization of input samples.

Implementation details

a) Experimental setup

(i) Hardware

The model implementation and training utilize a system
equipped with an NVIDIA Tesla K20 GPU with 5 GB of
memory. It operates on Windows 10, supported by a 64-bit
Intel i3 processor.

(ii) Software

To implement pre-trained architectures using an open-source
language, this work suggests utilizing TensorFlow.
TensorFlow, an open-source self-learning platform primarily
created by Google and based on Python, provides a
comprehensive array of libraries. One of these is Keras, a
Python deep learning application programming interface (API)
built on TensorFlow. Keras simplifies the creation of
equivalent models effortlessly.

(iii) Integrated Development Environment (IDE)

The experimental evaluation takes place within the Jupyter
Notebook environment.

b) Data collection

The research utilizes an open-source DR detection dataset
sourced from Kaggle [18], comprising 2834 images. The
classification task involves sorting the images into four classes:
No DR, Mild DR, Moderate DR, and Severe DR, graded on a
scale of 0-3 (0-No DR, 1-Mild, 2-Moderate, 3-Severe) to
denote varying severity levels. Additionally, the dataset is
partitioned to accommodate the model, with specifics of the
split provided in Tables 2 and 3, indicating the number of
retinal images in Validation Set available for each severity
level.

Table 2 The details of DR Dataset

Dataset subsets

Number of Images in Kaggle dataset

Training set

1984

Validation set

850

Table 3 The number of retinal images available in the Validation Set for each DR Stages

Severity level Number of images in Validation Set
Class-0 (normal) 211
Class-1 (mild stage) 213
Class-2 (moderate stage) 214
Class-3 (severe stage) 212
Total 850
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c¢) Evaluation metrics

Accuracy serves as the most fundamental evaluation metric in
classification tasks, representing the proportion of correctly
classified samples. Precision denotes the likelihood of
correctly identifying positive samples out of all samples
predicted as positive. Recall, on the other hand, pertains to the
likelihood of correctly identifying positive samples out of all
actual positive samples. The F1 score, a commonly used
evaluation metric for classifiers, amalgamates precision and
recall, providing a balanced performance measure for
classification tasks [19]. Certainly here are the equations (1),
(2), (3) and (4) for these Performance Metrics,

Accuracy =

True Positives+True Negatives ( )
True Positives+False Negatives+True Negative+False Positives

e True Positi
Sensitivity = Recall = rue Positive @)

True Positive+False Negatives
A True Positives
Precision = — —(3)
True Positives+False Positives
2 Precision+Recall
F1-Score = —— (4)

Precision+Recall

Results and Discussion

Table 4 shows the performance comparison of the existing
CNN architectures and the proposed CNN architecture.
Among the models tested, the Novel CNN model exhibited the
highest accuracy with a score of 0.95, showcasing its
effectiveness in classifying DR stages.

Table 4 The Metrics of the Proposed Model compared with Existing Works

S.No. Model Accuracy Precision Recall F1 Score
1 Pratt [20] 0.75 - - -
2 Pradeep Kumar Jena [24] 0.9360 0.9188 0.8206 0.8669
3 Proposed Novel CNN Model 0.9541 0.9336 0.9463 0.9398

A confusion matrix is a tabular representation that illustrates
the effectiveness of a classification model. It presents a
summary of both correct and incorrect predictions made by the
model, differentiating between True Positives, True Negatives,

False Positives, and False Negatives. While Figure 3 depicts
the Confusion Matrices of the Novel CNN Architecture, this
matrix furnishes valuable insights into the classification
model's performance.

Predicted Label
2 3

True Label

Novel CNN Architecture

Fig.3 Confusion Matrix of Novel CNN Architecture

The Figure 4 illustrates the losses and validation loss of a
Novel CNN Model across 10 epochs. The training loss
demonstrates a continual decrease in loss values during
training, highlighting its ability to adapt and refine parameters
to minimize loss throughout dataset iterations. Concurrently,

B Novel architecture - Training Loss

2.00

150

1.00

Training Loss and Validation Loss

0.50

the validation loss consistently diminishes as training
progresses. This significant reduction in validation loss
suggests that the Novel CNN Architecture effectively learns
from the training data, thus improving its performance in DR
Classification.

Novel Architecture - Validation Loss

Fig.4 Training Loss and Validation Loss per Epoch of Novel CNN Model
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The Figure 5 illustrates the Novel architecture model consistently maintains its accuracy, achieving a score of 0.97. This suggests a
high level of precision, as the model's predictions closely match the actual outcomes. Similarly, during the validation phase, the accuracy
of the Novel architecture remains consistently high, with a score of 0.95, indicating the model's reliability throughout validation. Thus,
the high validation accuracy of the novel CNN architecture demonstrates its successful ability to precisely categorize DR images based

on the learned features during training.

Il Novel Architecture -Training Accuracy

Novel Architecture - Validation Accuracy

Training Accuracy and Validation
Accuracy

1 2 3

—

4

5
Epachs

R

6 7 8 9 10

Fig.5 Training Accuracy and Validation Accuracy per Epoch of Novel CNN Model

Several research papers in the area of CNN have evolved for
the automated detection of DR [20, 21, 22, 23, 24]. CNN
methodologies are firmly established and applicable across
various medical applications as well as beyond the medical
domain.

In order to classify and stage DR, a deep CNN architecture
with 18 convolutional layers and 3 fully linked layers was
employed in the study [24]. Three categories for the subjects
were no DR, moderate DR, and severe DR. A total of 4,600
fundus images were generated from the original Waggle
dataset, utilizing a class-specific data augmentation
technique.The proposed network was trained and tested on
these images using 5-fold and 10-fold cross-validation
techniques. The study discovered a few drawbacks too. Firstly,
the CNN model could only classify DR into three categories,
combining mild and moderate NPDR into one group, and
severe NPDR and PDR into another. Secondly, the perception
of neural network models as "black boxes" generally makes it
difficult to understand the extracted characteristics or results.
SVM techniques, on the other hand, extract customized
features that help medical professionals find DR biomarkers.
CNN is one of the deep learning methods that is prone to
overfitting. When a model is trained on a small dataset, it
becomes overfitted and performs inadequately on additional
data. To mitigate this, 5- and 10-fold cross-validation were
used in conjunction with class-specific data augmentation to
reduce overfitting and offer an unbiased evaluation on the
given dataset.

However the proposed Novel CNN architecture outperforms
the above literature due to several factors. Firstly, the proposed
CNN can classify the DR Stages into four categories. This
happens because convolutional layers efficiently capture
hierarchical features from input images by employing multiple
layers of convolutions with varying filter sizes, allowing the
model to detect patterns at different levels of abstraction.
Additionally, max-pooling layers aid in down sampling feature
maps, preserving crucial information while reducing
computational complexity and preventing overfitting, thereby
enhancing spatial hierarchical representation within the
images. Furthermore, the utilization of dropout layers helps
prevent overfitting by randomly dropping neuron units during
training, promoting the learning of redundant representations,
and improving generalization ability. Batch normalization
layers stabilize and expedite the training process by
normalizing activations, leading to faster convergence and
better performance. The incorporation of 'same' padding in
convolutional and max-pooling layers ensures the preservation
of spatial dimensions, crucial for retaining important
information near input image borders during operations.
Moreover, the architecture is designed to scale with dataset
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complexity, allowing for the learning of intricate features and
patterns through increased filter and layer count. The use of
ReLU activation functions introduces non-linearity, enabling
the model to learn complex decision boundaries and better
represent underlying data distributions. Lastly, Softmax
activation in the final layer facilitates multi-class classification
tasks by converting raw scores into probabilities, aiding in easy
interpretation and decision-making. In summary, this CNN
architecture exhibits robustness, efficiency, and adaptability,
making it well-suited for a wide range of image classification
task.

Conclusion

The research concentrates on developing an innovative CNN
architecture tailored for detecting DR with notable success
being demonstrated on a publicly available dataset from
Waggle. Following the experiments, the bespoke CNN
techniques undergo rigorous evaluation based on key metrics
including Accuracy, Precision, Recall, and F1-Score. The
experiment results show that the customized CNN attains a
remarkable 95% accuracy rate, 93% precision, 94% recall, and
a 93% F1 score. This result clearly shows that the CNN
architecture is superior in identifying DR since it performs well
in classification tasks with minimal error. Future work will also
concentrate on implementing the proposed model for practical
usage in order to verify its effectiveness and collaboration with
medical experts is essential. This validation procedure
encompasses evaluating the model's efficacy in detecting DR
using Novel, unseen data. Medical specialists will scrutinize
the model's predictions against verified ground truth labels,
ensuring its accuracy, sensitivity, specificity, and overall
reliability within clinical environments.
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