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Abstract 

Objective: Diabetic Retinopathy (DR) is the leading cause of preventable blindness in adults. It is the leading cause of 

vision loss, in people aged 50 and above. Global prevalence is projected to rise to 129.84 million by 2030 and 160.5 

million by 2045. Effective management relies on regular screening and prompt intervention. With increasing demands, 

automated screening methods using deep learning techniques offer enhanced diagnostic accuracy and timely intervention. 

This study aimed to address the increasing prevalence of DR and the demand for automated screening methods, leveraging 

deep learning techniques to enhance diagnostic accuracy and facilitate timely intervention. 

Methods: In this research, a new Convolutional Neural Network (CNN) architecture is tested with the goal of accurately 

detecting different stages of DR. A thorough assessment of innovative CNN design, is done using various metrics such as 

Accuracy, Precision, Recall, and F1 score. 

Results: The Experimental findings indicate that the proposed CNN model surpasses existing research efforts, 

demonstrating its superiority in accurately predicting stages of DR. With impressive metrics such as 95% accuracy, 93% 

precision, 94% recall, and a 93% F1 score, this novel CNN model showcases its efficacy in precisely assessing the severity 

of DR and the integration of batch normalization and dropout layers into the architecture aids in mitigating overfitting, 

further enhancing the model's performance and generalization capabilities. 

Conclusion: In conclusion, the comprehensive experimentation and evaluation have established the robustness and 

scalability of the model, offering promising prospects for improved DR screening in clinical settings. The results 

emphasize the transformative potential of innovative deep learning architectures in revolutionizing DR diagnosis and 

management. With these advancements, the future of DR care can be predicted to improve patient outcomes and preserve 

vision. 
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Introduction 

Diabetes mellitus, a significant public health concern 

characterized by chronic hyperglycemia, has surged in both 

developed and developing Nations. As a result, it can lead to a 

condition called DR, which can cause permanent blindness in 

severe cases. This condition mainly arises from damage to the 

blood vessels that supply nutrients to the retina, a tissue 

sensitive to light [1]. According to the World Health 

Organization (WHO), around 382 million people had DR in 

2013, and this number is expected to reach 592 million by 2025 

[2]. Additionally, as per the International Diabetes Federation's 

2021 report, there are currently 537 million cases of diabetes, 

projected to increase to 643 million by 2030 and 783 million 

by 2045 [3]. Furthermore, DR is common among certain 
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groups of patients, with approximately 40% of type II diabetic 

patients and 86% of type I diabetic patients. Numerous clinical 

studies have demonstrated that prompt treatment and effective 

blood sugar management can mitigate the associated risks of 

DR [4].  

In DR, lesions refer to abnormalities or changes in the retina. 

These lesions include: 

1. Microaneurysms: Small bulges in the blood vessels of the 

retina. 

2. Hemorrhages: Leakage of blood from weakened blood 

vessels into the retina. 

3. Exudates: Deposits of fats and proteins leaking from 

damaged blood vessels. 

 

These lesions can be observed during fundus examination 

using techniques such as fundus photography or fluorescein 

angiography, and they play a crucial role in assessing the 

severity of DR and guiding treatment decisions [5]. The 

primary aim of DR classification is to identify and grade the 

severity of the disease based on the International clinical DR 

disease severity scale. Figure 1 displays retinal images 

exhibiting various levels of severity in DR. 

 

 
Fig.1 DR Stages 

 
Thus, regular eye screening is imperative to safeguard vision 

and prevent blindness in individuals with diabetes. In clinical 

settings, Ophthalmologists utilize fundus photography to 

examine the retina for abnormalities and evaluate the severity 

of DR. However, manually inspecting fundus images requires 

expertise and effort to ensure effective DR screening. 

Therefore, an automated DR grading system is essential for 

early disease diagnosis which analyzes retinal images 

efficiently, making screening accessible, reducing the burden 

on healthcare professionals, and utilizing AI advancements for 

accurate diagnosis, ultimately preventing vision loss. The 

standard grading protocol for assessing the severity of DR can 

be classified into four stages: No DR (Class-1), Mild DR 

(Class-2), Moderate DR (Class-3), and Severe DR (Class-4). 

Artificial Intelligence (AI) holds promise in aiding primary 

Ophthalmologists in diagnosis by leveraging comprehensive 

medical data, thus introducing novel strategies to enhance the 

diagnostic and treatment standards for eye diseases in primary 

healthcare facilities [6]. The integration of AI with 

ophthalmological medical practices aims to address the 

practical requirements of a considerable patient population 

afflicted with fundus diseases. Traditional image feature 

extraction methods rely heavily on researchers' prior 

knowledge, posing significant limitations [7]. However, in 

recent years, the rapid advancements in deep learning models 

within the realm of computer vision have substantially 

outperformed traditional approaches. Of particular 

significance is the CNN model, renowned for its robust 

representation capabilities, which mitigate the drawbacks 

associated with conventional feature extraction methods [8]. 

Challenges persist in obtaining adequate authentic fundus 

images, especially concerning rare fundus diseases. 

Furthermore, with limited data available and the presence of 

inherent image noise, training a single model to attain optimal 

accuracy in disease detection becomes challenging [9]. 

Considering the existing challenges, the Novel CNN has 

undergone comprehensive design and optimization. This work 

is notable for its comprehensive analysis and refinement of a 

CNN architecture designed specifically to increase the 

accuracy and efficiency of classifying different stages of DR. 

This architectural innovation could involve novel layer 

topologies, activation functions, connection patterns, that 

enhance the network's ability to learn. 

This paper is structured as follows: The second section begins 

by introducing the related works. In the third section, a detailed 

explanation of the materials and methods utilized in this work 

is provided. The experimental results are then presented and 

discussed in the fourth section. Finally, the fifth section offers 

conclusions. 

 

Related Works 

Currently, CNN models are extensively utilized in 

classification tasks, yielding higher accuracy rates. This 

literature review discusses how CNN models have been 

employed in identifying DR stages. The concept of AI is 

introduced in 1956 [10]. Shortly after, Arthur Samuel proposed 

machine learning (ML) in 1959, emphasizing the importance 

of ML's capacity to acquire statistical techniques without 

explicit programming. Deep learning (DL) emerged as a subset 

of ML, predominantly employing multi-layer neural networks. 

Among DL models, CNN stand out for image processing, 

comprising convolutional layers, pooling layers, and fully 

connected layers. Widely recognized CNN architectures 

include AlexNet, VGGNet, Inception V1–V4, ResNet, and 

DenseNet. These CNN models are trained end-to-end on 

labeled image datasets, enhancing accuracy by adjusting 

parameters through error backpropagation algorithms based on 

predefined objective functions. Another significant ML 

technique is transfer learning, wherein a model is initially 

trained in a source domain, and then fine-tuned in a target 

domain. This approach enables effective learning with good 

generalization capabilities, particularly beneficial for domains 

with limited data. DL offers a key advantage over traditional 

ML by automatically learning diverse levels of semantic 

feature representations from large-scale datasets. 

 In [11], the utilization of GoogleNet, ResNet, DenseNet, and 

VGG-16, is emphasized followed by a comparative analysis to 

determine the most optimized variant. Since all transfer 

learning networks are extensively pre-trained, the dataset 

necessary for implementation is significantly reduced. 

Initially, all fundus images are pre-processed and resized to 

224 x 224 pixels before being input into the subsequent layers. 

Upon comparison, it is noted that the Inception model achieved 

the highest accuracy, reaching 82 percent. Similarly, the 

approach described in [12] is focused on assessing the quality 

of fundus images during their acquisition process. It employs 

a Deep CNN (DCNN) architecture comprising five 

convolutional layers, two fully connected layers, and a binary 

classification layer, trained to automatically evaluate image 

quality. The initial convolutional layer of the DCNN is 

composed of 96 filters sized 11 × 11, followed by 256 filters in 

the second layer, 384 filters in both the third and fourth layers 

and 256 filters in the final layer. The activation size of the first 

and last fully connected layers is 4096 filters, resulting in a 

final output fully connected layer producing a 4096-

dimensional image. In addition to this in [13], a comparison 

between the InceptionV3 and Xception architectures is 

conducted to classify DR into two categories: DR or No DR, 

utilizing the Waggle dataset. The researchers utilized the entire 

dataset comprising 35, 126 images, allocating 20% of the 

https://doi.org/10.1089/dia.2023.0486
https://doi.org/10.7861/clinmed.2021-0792
https://doi.org/10.1016/j.imu.2024.101445
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https://doi.org/10.3390/app10062021
https://doi.org/10.5220/0005296604710477
https://doi.org/10.1609/aimag.v27i4.1904
https://doi.org/10.1016/j.ins.2019.06.011
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images for testing the algorithm's performance. Fine-tuning the 

last two blocks of the two architectures, they compared two 

optimizers with varying learning rates: stochastic gradient 

descent and Adam. Image augmentation techniques such as 

horizontal and vertical flipping, as well as shifting and rotating 

the images, were employed to enhance the model's robustness. 

The evaluation metric used to gauge the architectures' 

performance was accuracy. The reported accuracy results were 

87.12% for the InceptionV3 architecture and 74.49% for 

Xception.  

Moreover, in [14] an ensemble CNN architecture is introduced 

aimed at improving the efficiency of classification. Initially, 

they identified the most effective CNN model from a selection 

of eight architectures, namely InceptionResNetV2, 

MobileNetV2, DenseNet201, Xception, ResNet152V2, 

NASNetLarge, VGG16, and VGG19. Subsequently, data 

augmentation techniques such as rotation, width shift, and 

height shift were applied during the training phase of the CNN 

models. Thirdly, an ensemble CNN architecture was 

constructed using the three CNN models identified in the first 

step. For the ensemble learning approach, they proposed the 

weighted average method, and consequently, suggested the use 

of a grid-search method to optimize the weighted parameters. 

Experimental results demonstrated that the ensemble CNN 

architecture achieved an accuracy of 92.80%. On the same 

note, in [15] an ensemble learning is proposed which offers a 

solution to the limitations of deep learning by making 

predictions through multiple models instead of relying on a 

single model. Their experiment demonstrated promising 

results, achieving an accuracy of 95%. Hence this work aims 

to leverage a Novel CNN architecture for DR stage 

classification, with the objective of enhancing the accuracy of 

the model. 

 

Materials and Methods 

The proposed methodology aimed at constructing a system for 

the automated detection of DR diseases. Hence a customized 

neural network is constructed via training from scratch. 

Consequently, the detailed architecture of the network along 

with the specific implementation steps of the framework is 

elaborated below. 

 

Novel CNN Architecture 

CNN has achieved remarkable success in the field of fundus 

images due to its powerful feature learning ability. Neural 

networks are computational models formed by connecting 

simple computational units, called neurons, in specific 

patterns. They can, in principle, mimic the behaviours of any 

given function if there are enough neurons. CNNs represent a 

special type of neural network proposed by LeCun in 1990 

[16]. Due to their superior performance in image-oriented 

tasks, they have become the mainstream model for image-

related tasks. Generally, CNN layers can be classified into two 

categories: primary layers and secondary layers. The primary 

layers constitute the main components of the CNN and include 

convolution layers, activation layers, pooling layers, flatten 

layers, and dense layers. Secondary layers are optional layers 

that can be added to enhance CNNs' robustness against 

overfitting and increase their generalizability. These include 

dropout layers, batch normalization layers, and regularization 

layers [17].  

The Novel CNN Architecture is structured with careful 

consideration of various hyperparameters to facilitate effective  

classification of  DR Stages. 

In the literature [24], the CNN architecture was observed to 

resemble a modified version  of VGG-19. This modification 

entailed the addition of two convolutional layers, each 

followed by rectified linear units, inserted into the middle two 

stages. Furthermore, the final fully connected layer, originally 

comprised of 1000 neurons, was substituted with a three-

neuron layer. The output from the five stages of convolutional 

layers was subsequently directed into a sequence of two fully 

connected layers, each containing 4096 neurons. For non-

linear classification, the last fully connected layer featured 3 

neurons. Additionally, a dropout layer was implemented on the 

outputs of the initial two fully connected layers, resulting in the 

dropping of 50% of the outputs. This dropout mechanism 

aimed to further mitigate overfitting and enhance the 

robustness of the architecture. 

In reference to the current research, a CNN architecture is 

proposed, which begins with a convolutional layer that 

employs 32 filters of size 3x3, allowing the input data to 

undergo spatial convolution while maintaining dimensions 

through 'same' padding and a stride of 1 as shown in Figure 2.  

 

 
Fig.2 Novel CNN Architecture  

 
Batch normalization is then applied to standardize activations, 

thereby enhancing the stability and speed of training. 

Subsequently, max pooling with a 2x2 window and a stride of 

2 is utilized to reduce spatial dimensions, aiding in feature 

extraction while minimizing computational load. Following 

this, a dropout layer  is introduced, strategically positioned 

after the first convolutional block to prevent overfitting and 

improve generalization. The detailed summary of the Novel 

CNN Architecture is provided in Table 1. 

 

Table 1 The Layers and the Model Parameters used in the Novel CNN Architecture 
S.No. Layer Model Parameters 

1 Convolutional Filters: 32, Kernel Size: 3x3, Strides: 1, Padding: 'same' 

2 Batch Normalization - 

3 Max Pooling          Pool Size: 2x2, Strides: 2, Padding: 'same'                

4 Dropout   Rate: 0.1 (after the first convolutional block)             

5 Convolutional Filters: 64, Kernel Size: 3x3, Strides: 1, Padding: 'same' 

6 Batch Normalization - 

7 Max Pooling          Pool Size: 2x2, Strides: 2, Padding: 'same'                

8 Convolutional Filters: 64, Kernel Size: 3x3, Strides: 1, Padding: 'same' 

9 Batch Normalization - 

10 Max Pooling          Pool Size: 2x2, Strides: 2, Padding: 'same'                

http://www.icicel.org/ell/contents/2021/6/el-15-06-02.pdf
file:///C:/Users/rvbio/Downloads/10.1109/TII.2021.3057683
https://proceedings.neurips.cc/paper_files/paper/1989/file/53c3bce66e43be4f209556518c2fcb54-Paper.pdf
https://doi.org/10.3390/diagnostics13030393
file:///C:/Users/publi/Downloads/10.1371/journal.pone.0233514
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11 Convolutional Filters: 128, Kernel Size: 3x3, Strides: 1, Padding: 'same' 

12 Dropout    Rate: 0.2 (after the fourth convolutional block)            

13 Batch Normalization - 

14 Max Pooling          Pool Size: 2x2, Strides: 2, Padding: 'same'                

15 Convolutional        Filters: 256, Kernel Size: 3x3, Strides: 1, Padding: 'same' 

16 Dropout Rate: 0.2 (after the fifth convolutional block)             

17 Batch Normalization -                                                          

18 Max Pooling          Pool Size: 2x2, Strides: 2, Padding: 'same'                

19 Fully Connected      Units: 128, Activation: ReLU                                

20 Dropout    Rate: 0.2                                                    

21 Fully Connected      Units: 4, Activation: Softmax                                

 
The architecture maintains a consistent approach throughout 

its design, utilizing a series of convolutional blocks. These 

blocks are pivotal in processing the input data, gradually 

expanding the complexity of feature extraction by 

incrementally increasing the number of filters employed. This 

progressive augmentation, first to 64 filters and subsequently 

to 128, allows for a more subtle understanding of the 

underlying features present in the dataset. 

To ensure the stability and prevent the model from overfitting 

to the training data, batch normalization and dropout layers are 

strategically integrated after each convolutional block. Batch 

normalization standardizes the inputs to each layer, making the 

optimization process more efficient and reducing the 

likelihood of the model becoming overly sensitive to small 

changes in the input data. Dropout layers, on the other hand, 

temporarily deactivate a proportion of neurons during training, 

preventing them from becoming overly reliant on specific 

features and enhancing the generalization capability of the 

model. 

Once the data has been processed through the convolutional 

layers and pooling operations, it undergoes flattening to 

transform the multidimensional feature maps into a format 

suitable for input into fully connected layers. These dense 

layers serve as the core of the model, leveraging their ability to 

capture complex patterns within the data. The initial dense 

layer with 128 units, employs Rectified Linear Unit (ReLU) 

activation to introduce non-linearity into the model. This 

activation function facilitates the model's ability to capture 

complex, nonlinear state present in the data, enhancing its 

capacity to learn and generalize effectively. 

A challenging aspect of the design is the deliberate elevation 

of the dropout rates to 20% after the fourth and fifth 

convolutional blocks. This adjustment is aimed at further 

mitigating overfitting while retaining crucial features 

necessary for accurate classification. By intermittently 

dropping out a higher proportion of neurons at these stages, the 

model is encouraged to focus on the most salient features 

present in the data, thus promoting better generalization to 

unseen data. 

Finally, the architecture terminate in a dense layer comprising 

4 units, employing softmax activation to produce output 

probabilities for the classification task. These probabilities 

represent the model's assurance in assigning input data to one 

of the four target classes, providing valuable insights into the 

model's decision-making process and enabling effective 

categorization of input samples. 

Implementation details  

a) Experimental setup 

(i) Hardware  

The model implementation and training utilize a system 

equipped with an NVIDIA Tesla K20 GPU with 5 GB of 

memory. It operates on Windows 10, supported by a 64-bit 

Intel i3 processor.  

(ii) Software 

To implement pre-trained architectures using an open-source 

language, this work suggests utilizing TensorFlow. 

TensorFlow, an open-source self-learning platform primarily 

created by Google and based on Python, provides a 

comprehensive array of libraries. One of these is Keras, a 

Python deep learning application programming interface (API) 

built on TensorFlow. Keras simplifies the creation of 

equivalent models effortlessly. 

(iii) Integrated Development Environment (IDE) 

The experimental evaluation takes place within the Jupyter 

Notebook environment. 

 

b) Data collection  

The research utilizes an open-source DR detection dataset 

sourced from Kaggle [18], comprising 2834 images. The 

classification task involves sorting the images into four classes: 

No DR, Mild DR, Moderate DR, and Severe DR, graded on a 

scale of 0–3 (0-No DR, 1-Mild, 2-Moderate, 3-Severe) to 

denote varying severity levels. Additionally, the dataset is 

partitioned to accommodate the model, with specifics of the 

split provided in Tables 2 and 3, indicating the number of 

retinal images in Validation Set available for each severity 

level.

Table 2 The details of DR Dataset 
Dataset subsets Number of Images in Kaggle dataset 

Training set 1984 

Validation set 850 

 

Table 3 The number of retinal images available in the Validation Set for each DR Stages 
Severity level Number of images in Validation Set 

Class-0 (normal) 211 

Class-1 (mild stage) 213 

Class-2 (moderate stage) 214 

Class-3 (severe stage) 212 

Total 850 

                     

https://www.kaggle.com/dataset/diabetic-retinopathy-224x224-2019
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c) Evaluation metrics  

Accuracy serves as the most fundamental evaluation metric in 

classification tasks, representing the proportion of correctly 

classified samples. Precision denotes the likelihood of 

correctly identifying positive samples out of all samples 

predicted as positive. Recall, on the other hand, pertains to the 

likelihood of correctly identifying positive samples out of all 

actual positive samples. The F1 score, a commonly used 

evaluation metric for classifiers, amalgamates precision and 

recall, providing a balanced performance measure for 

classification tasks [19]. Certainly here are the equations (1), 

(2), (3) and (4) for these Performance Metrics, 

 

Accuracy =
True Positives+True Negatives

True Positives+False Negatives+True Negative+False Positives
 (1) 

Sensitivity = Recall =
True Positive

True Positive+False Negatives
 (2) 

Precision =  
True Positives

True Positives+False Positives
 (3)                   

F1-Score =
2 Precision+Recall

Precision+Recall
 (4)                                       

                  

Results and Discussion 

Table 4 shows the performance comparison of the existing 

CNN architectures and the proposed CNN architecture. 

Among the models tested, the Novel CNN model exhibited the 

highest accuracy with a score of 0.95, showcasing its 

effectiveness in classifying DR stages.  

 
Table 4 The Metrics of the Proposed Model compared with Existing Works 

S.No. Model Accuracy Precision Recall F1 Score 

1 Pratt [20] 0.75 - - - 

2 Pradeep Kumar Jena [24] 0.9360 0.9188 0.8206 0.8669 

3 Proposed Novel CNN Model 0.9541 0.9336 0.9463 0.9398 

 
A confusion matrix is a tabular representation that illustrates 

the effectiveness of a classification model. It presents a 

summary of both correct and incorrect predictions made by the 

model, differentiating between True Positives, True Negatives, 

False Positives, and False Negatives. While Figure 3 depicts 

the Confusion Matrices of the Novel CNN Architecture, this 

matrix furnishes valuable insights into the classification 

model's performance.

 

 
Fig.3 Confusion Matrix of Novel CNN Architecture 

 
The Figure 4 illustrates the losses and validation loss of a 

Novel CNN Model across 10 epochs. The training loss 

demonstrates a continual decrease in loss values during 

training, highlighting its ability to adapt and refine parameters 

to minimize loss throughout dataset iterations. Concurrently, 

the validation loss consistently diminishes as training 

progresses. This significant reduction in validation loss 

suggests that the Novel CNN Architecture effectively learns 

from the training data, thus improving its performance in DR 

Classification. 

 

 
Fig.4 Training Loss and Validation Loss per Epoch of Novel CNN Model 

 

https://doi.org/10.3390/sym11060749
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The Figure 5 illustrates the Novel architecture model consistently maintains its accuracy, achieving a score of 0.97. This suggests a 

high level of precision, as the model's predictions closely match the actual outcomes. Similarly, during the validation phase, the accuracy 

of the Novel architecture remains consistently high, with a score of 0.95, indicating the model's reliability throughout validation. Thus, 

the high validation accuracy of the novel CNN architecture demonstrates its successful ability to precisely categorize DR images based 

on the learned features during training. 
 

 
Fig.5 Training Accuracy and Validation Accuracy per Epoch of Novel CNN Model 

 
Several research papers in the area of CNN have evolved for 

the automated detection of DR [20, 21, 22, 23, 24]. CNN 

methodologies are firmly established and applicable across 

various medical applications as well as beyond the medical 

domain. 

In order to classify and stage DR, a deep CNN architecture 

with 18 convolutional layers and 3 fully linked layers was 

employed in the study [24]. Three categories for the subjects 

were no DR, moderate DR, and severe DR. A total of 4,600 

fundus images were generated from the original Waggle 

dataset, utilizing a class-specific data augmentation 

technique.The proposed network was trained and tested on 

these images using 5-fold and 10-fold cross-validation 

techniques. The study discovered a few drawbacks too. Firstly, 

the CNN model could only classify DR into three categories, 

combining mild and moderate NPDR into one group, and 

severe NPDR and PDR into another. Secondly, the perception 

of neural network models as "black boxes" generally makes it 

difficult to understand the extracted characteristics or results. 

SVM techniques, on the other hand, extract customized 

features that help medical professionals find DR biomarkers. 

CNN is one of the deep learning methods that is prone to 

overfitting. When a model is trained on a small dataset, it 

becomes overfitted and performs inadequately on additional 

data. To mitigate this, 5- and 10-fold cross-validation were 

used in conjunction with class-specific data augmentation to 

reduce overfitting and offer an unbiased evaluation on the 

given dataset.   

However the proposed Novel CNN architecture outperforms 

the above literature due to several factors. Firstly, the proposed 

CNN can classify the DR Stages into four categories. This 

happens because convolutional layers efficiently capture 

hierarchical features from input images by employing multiple 

layers of convolutions with varying filter sizes, allowing the 

model to detect patterns at different levels of abstraction. 

Additionally, max-pooling layers aid in down sampling feature 

maps, preserving crucial information while reducing 

computational complexity and preventing overfitting, thereby 

enhancing spatial hierarchical representation within the 

images. Furthermore, the utilization of dropout layers helps 

prevent overfitting by randomly dropping neuron units during 

training, promoting the learning of redundant representations, 

and improving generalization ability. Batch normalization 

layers stabilize and expedite the training process by 

normalizing activations, leading to faster convergence and 

better performance. The incorporation of 'same' padding in 

convolutional and max-pooling layers ensures the preservation 

of spatial dimensions, crucial for retaining important 

information near input image borders during operations. 

Moreover, the architecture is designed to scale with dataset 

complexity, allowing for the learning of intricate features and 

patterns through increased filter and layer count. The use of 

ReLU activation functions introduces non-linearity, enabling 

the model to learn complex decision boundaries and better 

represent underlying data distributions. Lastly, Softmax 

activation in the final layer facilitates multi-class classification 

tasks by converting raw scores into probabilities, aiding in easy 

interpretation and decision-making. In summary, this CNN 

architecture exhibits robustness, efficiency, and adaptability, 

making it well-suited for a wide range of image classification 

task. 

 

Conclusion 

The research concentrates on developing an innovative CNN 

architecture tailored for detecting DR with notable success 

being demonstrated on a publicly available dataset from 

Waggle. Following the experiments, the bespoke CNN 

techniques undergo rigorous evaluation based on key metrics 

including Accuracy, Precision, Recall, and F1-Score. The 

experiment results show that the customized CNN attains a 

remarkable 95% accuracy rate, 93% precision, 94% recall, and 

a 93% F1 score. This result clearly shows that the CNN 

architecture is superior in identifying DR since it performs well 

in classification tasks with minimal error. Future work will also 

concentrate on implementing the proposed model for practical 

usage in order to verify its effectiveness and collaboration with 

medical experts is essential. This validation procedure 

encompasses evaluating the model's efficacy in detecting DR 

using Novel, unseen data. Medical specialists will scrutinize 

the model's predictions against verified ground truth labels, 

ensuring its accuracy, sensitivity, specificity, and overall 

reliability within clinical environments. 
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