
3295 Afr. J. Biomed. Res. Vol. 27, No.4s (November) 2024 Karthikeyan M P et al.

https://africanjournalofbiomedicalresearch.com/index.php/AJBR

Afr. J. Biomed. Res. Vol. 27(4s) (November 2024); 3295-3307
Research Article

Comprehensive Investigation Of Join Query Optimization Using
Dqn (Deep Q-Network), Ddqn (Double Deep Q-Network),

Genetic Algorithms And Hybrid Dqn-Ga And Ddqn –Ga

Karthikeyan M P1, Dr.K. Krishnaveni2

1Research Scholar, Department of Computer Science, Sri. S. Ramasamy Naidu Memorial College (Affiliated

to Madurai Kamaraj University, Madurai), Sattur, Virudhunagar District, Tamil Nadu 626203, India,

Email: karthi.karthis@gmail.com
2Associate Professor & Head, Department of Computer Science, Sri. S. Ramasamy Naidu Memorial College

(Affiliated to Madurai Kamaraj University, Madurai), Sattur, Virudhunagar District, Tamil Nadu 626203,

India, Email: kkrishnaveni@srnmcollege.ac.in

Abstract: Effective query optimization is essential for improving database management system performance. Using a

variety of cutting-edge approaches, including Deep Q-Networks (DQN), Double Deep Q-Networks (DDQN), Genetic

Algorithms (GA), and Hybrid DQN-GA and DDQN-GA, we present a thorough examination of join query optimization

in this research article. In relational databases, join queries are frequently used to merge data from several tables. The

issue of optimizing join queries to reduce response time and resource use is still difficult. The reinforcement learning-

inspired DQN and DDQN algorithms offer a framework for teaching agents to make the best judgments possible in

dynamic situations. In order to discover effective query execution techniques, we use the power of DQN and DDQN to

formulate join query optimization as a Markov Decision Process (MDP). We also present genetic algorithms as a

different strategy for searching the space of join query plans. In this study, we examine the query execution times and

resource use of DQN, DDQN, GA, and hybrid DQN-GA and DDQN-GA approaches. The efficacy of each strategy is

evaluated experimentally on a wide range of Join Order benchmark (JOB) datasets. Our findings show that as compared

to conventional methods, hybrid DDQN-GA based techniques significantly enhance query optimization. In order to

maximize the benefits of both algorithms, we also explore the pairing of DQN and GA. The hybrid DQN-GA technique

outperforms individual algorithms in terms of Query Execution Time, Query Latency, Resource Utilization,

Optimization Latency, and Join Query Performance; demonstrating greater performance in optimizing joins queries.

Similarly, the hybrid DDQN-GA approach also presents promising results.

Keywords: Join Query Optimization, Deep Q-Network, Double Deep Q-Network, Genetic Algorithms, Markov

Decision Process, Query Execution Time, Query Latency

*Author for correspondence: Email: karthi.karthis@gmail.com

Received 19/11/2024, Acceptance 25/11/2024

DOI: https://doi.org/10.53555/AJBR.v27i4S.4185

 © 2024 The Author(s).

This article has been published under the terms of Creative Commons Attribution-Noncommercial 4.0 International

License (CC BY-NC 4.0), which permits noncommercial unrestricted use, distribution, and reproduction in any medium,

provided that the following statement is provided. “This article has been published in the African Journal of Biomedical

Research”

I.INTRODUCTION

In a relational database management system (RDBMS),

join query optimization is the process of choosing the

most effective execution plan for queries including join

procedures. The Join operation combines the rows from

the various tables when there are many tables involved

mailto:karthi.karthis@gmail.com
mailto:kkrishnaveni@srnmcollege.ac.in
mailto:karthi.karthis@gmail.com
https://doi.org/10.53555/AJBR.v27i4S.4185

Comprehensive Investigation Of Join Query Optimization Using Dqn (Deep Q-Network), Ddqn (Double Deep Q-

Network), Genetic Algorithms And Hybrid Dqn-Ga And Ddqn –Ga

3296 Afr. J. Biomed. Res. Vol. 27, No.4s (November) 2024 Karthikeyan M P et al.

in the query. The goal of join query optimization is to

reduce computational overhead and boost the efficiency

of these join processes. When working with huge

datasets, join procedures in database systems may be

computationally costly. Database systems may execute

queries more quickly by optimizing the join queries,

which enables applications to deliver timely and

responsive results to end users [1]. In situations where

complicated queries or queries involving many tables

are typical, join query optimization is very important.

These queries are often used in decision support

systems, business intelligence software, and data

analytics, all of which require excellent query

processing in order to analyze data effectively and make

decisions [2].

A few advantages of effective join query optimization

are [3]:

• Shorter query processing time: By choosing the best

join technique and execution plan, the overall query

processing time may be cut in half, resulting in a more

responsive system.

• Better resource utilization: By ensuring optimum

use of system resources including CPU, memory, and

disc I/O, join query optimization enhances scalability

and efficiency.

• Improved user experience: By giving users prompt

access to desired information, quicker query response

times improve user experience.

• Enhanced system throughput: By allowing the

database system to accommodate more concurrent

queries, optimized join queries enhance the system's

overall throughput and performance.

Overall, join query optimization is essential for

maximizing the effectiveness and speed of database

systems, enabling businesses to properly utilize their

data and extract insightful knowledge from sizable

databases.

Challenges in Join Query Optimization

For successful query processing, join query optimization

offers a number of issues that must be resolved [4].

These difficulties include:

• Query Complexity: When numerous tables are

involved and various join criteria need to be fulfilled,

join queries can become very complicated. Finding the

best execution strategy is difficult because of the

combinatorial proliferation of join orders and join

algorithms that might be used.

• Cost Prediction: For choosing the most effective

execution strategy, it is essential to accurately estimate

the costs of various join procedures. However, due to

variables in data distribution, errors in statistics, and

dynamic changes in the database environment, cost

estimation might be difficult. Inaccurate cost estimates

may result in execution plans that are less than ideal

and poor query performance.

• Scalability of the optimizer: Join query optimization

gets more difficult as database size and query

complexity increase. In a fair length of time,

optimizers must sort through a huge number of

alternative join pathways and select the optimum

course of action. The search space grows

exponentially as the number of tables and joins criteria

rises, making the optimization procedure

computationally costly.

• Join Cardinality assessment: For cost assessment

and plan selection, it is essential to estimate the

cardinality (number of rows) arising from a join

operation. However, when join predicates contain

complicated conditions, correlations, or inequalities,

correct cardinality estimate becomes challenging. The

execution of queries inefficiently and improper join

techniques can both be caused by inaccurate

cardinality estimations.

• Dynamic optimization: Database environments vary

over time, affecting the workload, statistics, and

distribution of data. To maintain peak performance,

the optimizer must respond to these changes and

dynamically modify the execution plans. However, it

might be difficult to dynamically optimize join queries

while maintaining minimum query interruption.

• Join Order Optimization: How the tables are

connected may have a big influence on how fast a

query runs. It is an NP-hard task to choose the best

join order from the increasingly huge search space.

The ideal join order is approximated by traditional

query optimizers using heuristics and cost-based

methods, but identifying the globally optimum

solution is still difficult [5].

• Index Selection: Effective usage of indexes is

essential for optimizing join queries. It can be difficult

to choose the right indexes for join predicates and

reduce the amount of index lookups, though. To

choose the best index, the optimizer must take into

account the distribution of the data, the cost of index

access, and the selectivity of the predicates.

Advanced algorithms, statistical models, and

optimization methods are needed to tackle these

problems. To increase join query optimization and get

beyond these obstacles, researchers and practitioners are

always coming up with new strategies.

Join query optimization; in particular, which entails

choosing the best join algorithms and the best join order

in order to reduce execution time and resource use. The

use of genetic algorithms (GAs) to solve this

optimization challenge is a potential solution. This

article examines the use of a genetic algorithm for join

query optimization and provides a summary of the

essential procedures. In order to explore the solution

space and identify nearly optimum query plans, genetic

algorithms provide a potent method for join query

optimization. It is feasible to find effective join orders

and selections by specifying suitable chromosomal

representations, fitness functions, and genetic operators.

Although a genetic algorithm for join query

optimization has to be put into place with careful

thought and system-specific modifications, it has a great

deal of promise to enhance the efficiency of complicated

database queries. However, recent developments in

artificial intelligence have made it possible to

Comprehensive Investigation Of Join Query Optimization Using Dqn (Deep Q-Network), Ddqn (Double Deep Q-

Network), Genetic Algorithms And Hybrid Dqn-Ga And Ddqn –Ga

3297 Afr. J. Biomed. Res. Vol. 27, No.4s (November) 2024 Karthikeyan M P et al.

investigate innovative approaches. This article

examines the use of Deep Q Network (DQN), a

reinforcement learning technology, for join query

optimization, highlighting the possible advantages and

explaining the essential procedures. By fusing deep

learning methods with Q-learning, Deep Q Network

(DQN) revolutionized reinforcement learning. It is a

potent algorithm for resolving challenging decision-

making issues because of its capacity to manage high-

dimensional state spaces and learn from unprocessed

sensory data. DQN offers a powerful framework for

instructing agents to optimize their behaviors in

dynamic contexts through the use of deep neural

networks, experience replay, and target networks. DQN

has been and will continue to be a crucial algorithm in

the field of reinforcement learning thanks to continuous

research and new developments. In the context of

choosing the best query execution plans, Deep Q

Network (DQN) may also be used for query

optimisation. Three widely used algorithms—DQN

(Deep Q-Network), DDQN (Double Deep Q-Network),

and Genetic Algorithms—have been used to optimise

join queries. Each of these algorithms has unique

strengths and shortcomings and takes a different angle

on the issue.

II. REINFORCEMENT LEARNING AND DEEP Q-

NETWORK (DQN)

Reinforcement learning (RL) is a subfield of machine

learning that focuses on learning optimal actions in an

environment to maximize a cumulative reward. It is

inspired by how humans and animals learn through trial

and error interactions with their surroundings. In RL, an

agent learns to make sequential decisions by exploring

the environment, taking actions, and receiving feedback

in the form of rewards or penalties [6].

The core components of reinforcement learning include:

• Agent: The learner or decision-maker that interacts

with the environment.

• Environment: The external context in which the

agent operates, providing feedback and state

transitions based on agent actions.

• State: The current representation of the environment,

capturing relevant information for decision-making.

• Action: The decision or choice made by the agent at a

particular state.

• Reward: The numerical feedback provided by the

environment to reinforce or discourage certain actions.

The agent aims to maximize the cumulative reward

over time.

Reinforcement learning algorithms utilize the concept of

Markov Decision Processes (MDPs) to model the

interaction between the agent and the environment.

MDPs define the state space, action space, transition

probabilities, and reward functions that characterize the

environment [7].

Deep Q-Network (DQN) Algorithm

A well-known reinforcement learning system called

Deep Q-Network (DQN) combines Q-learning, a

traditional RL algorithm, with deep neural networks. In

2013, DeepMind unveiled DQN, which attracted

attention for playing Atari games at a superhuman level.

The main concept of DQN is to approximate the Q-

value function, which calculates the expected

cumulative reward for performing a certain action in a

specific condition [8]. The Q-network, a kind of neural

network, is generally used to represent the Q-value

function. The state is the Q-network's input, and its

output is a projected vector of Q-values for each

potential action.

Experience replay and a target network are used by the

DQN algorithm to increase stability and learning

effectiveness. The agent's experiences (state, action,

reward, and future state) are stored in a replay buffer

during experience replay, which is randomly sampled

throughout training to break correlations between

successive events. In order to lower the target estimate

errors, the target network is a distinct copy of the Q-

network that is routinely updated with the Q-network's

weights. DQN balances investigating novel activities

with using the acquired information by using an

exploration-exploitation method like epsilon-greedy.

This enables the agent to find the best policies without

becoming bogged down in inefficient behaviour.

DQN is an approach for reinforcement learning that uses

a neural network to simulate the Q-value function. To

choose the best join order for a particular query, it

employs an iterative process of exploration and

exploitation [9]. DQN has the benefit of being able to

handle dynamic and complicated settings, but it

frequently needs a lot of training data and can be costly

computationally. The Q-learning technique and a neural

network approximation are integrated in the Deep Q-

Network (DQN) formula. The predicted cumulative

reward for performing a certain action in a specific

condition is represented by the Q-value. The Q-network

is a type of neural network used by the DQN method to

estimate the Q-values. The DQN formula is as follows:

Q(s, a) = R + γ * max(Q(s', a'))

Where:

• Q(s, a) represents the Q-value for state s and action a.

• R is the immediate reward obtained after taking action

a in state s.

• γ (gamma) is the discount factor that determines the

importance of future rewards. It ranges between 0 and

1, where a value of 0 means only considering

immediate rewards and a value of 1 means considering

all future rewards.

• max(Q(s', a')) represents the maximum Q-value among

all possible actions a' in the next state s'.

III. JOIN QUERY OPTIMIZATION USING DEEP

Q-NETWORK

The capacity of DQN to learn from experience and

adapt to dynamic and complicated contexts is its main

advantage when it comes to join query optimization.

Traditional optimization methods frequently rely on

static cost estimates and assumptions, which could not

accurately reflect the complexities of executing queries

in the actual world. DQN, on the other hand, has the

Comprehensive Investigation Of Join Query Optimization Using Dqn (Deep Q-Network), Ddqn (Double Deep Q-

Network), Genetic Algorithms And Hybrid Dqn-Ga And Ddqn –Ga

3298 Afr. J. Biomed. Res. Vol. 27, No.4s (November) 2024 Karthikeyan M P et al.

ability to adjust its policy based on previous query

execution data in order to enhance performance over

time [10] [11]. A DQN agent may understand the

underlying patterns and linkages between tables as well

as the effects of various join techniques on query

execution speed by being trained to explore the state-

action space of join query optimization. By maximizing

the projected long-term gains associated with execution

time and resource utilization, the agent continually

improves its decision-making process. DQN usage in

join query optimization has a number of possible

advantages. First, by identifying more effective join

designs, it has the potential to outperform conventional

optimization approaches. Additionally, it is flexible

enough to adjust to shifting workloads and data

distributions, continually enhancing query speed.

Finally, because the DQN agent automatically learns to

optimize queries based on past data, it lessens the need

for human query tuning. In this study, we examine how

DQN may be used to optimize join queries. We examine

its efficacy in reducing query execution time and

resource use as compared to conventional methods. We

also examine how the performance of DQN-based

optimization is impacted by variables like database size,

query complexity, and cardinality estimate precision.

Algorithm 1: Join Query Optimization using Deep

Q-Network (DQN)

Step 1: Initialization

• Initialize the deep Q-network with random weights: θ

← random initialization

• Define the replay memory to store experiences for

training: D ← ∅

• Set the exploration and exploitation parameters, such

as epsilon for the epsilon-greedy policy: ε ← initial

exploration rate

Step 2: Query and Join Space Representation

• Represent the join queries and join plans in a suitable

format, such as a matrix or a graph.

• Encode the join queries and join plans with

appropriate features, such as selectivity, cardinality,

and join conditions.

o Query Representation: Q = [q_1, q_2, ..., q_n], where

q_i represents the i-th join query.

o Join Plan Representation: P = [p_1, p_2, ..., p_m],

where p_i represents the i-th join plan.

o Join Query Encoding: q_i = [f_1, f_2, ..., f_k], where

f_j represents the j-th feature of the join query.

o Join Plan Encoding: p_i = [g_1, g_2, ..., g_l], where

g_j represents the j-th feature of the join plan.

Step 3: State Representation

• Encode the current state of the join optimization

problem.

• Formulate the state representation using relevant

features, such as the current join plan, selectivity

estimates, and available join operators.

o State Representation: S = [s_1, s_2, ..., s_p], where s_i

represents the i-th feature of the state.

o Join Plan Representation: s_i = [g_1, g_2, ..., g_l],

where g_j represents the j-th feature of the current join

plan.

o Selectivity Estimate: s_i = f(e_1, e_2, ..., e_n), where

e_k represents the estimate for the selectivity of join

predicate k.

o Available Join Operators: s_i = [o_1, o_2, ..., o_m],

where o_j represents the j-th available join operator in

the current state.

Step 4: Action Selection

• Use the deep Q-network to select an action (join

operator or join order) based on the current state.

• Calculate the Q-values for each possible action using

the deep Q-network's forward pass.

• Select the action with the highest Q-value or choose a

random action for exploration based on the

exploration-exploitation policy.

o Q-value Calculation: Q(s, a) = fθ(s, a), where fθ

represents the deep Q-network's forward pass.

o Epsilon-Greedy Policy: π(a|s) = (1-ε) * argmax(Q(s,

a)) + ε * random(a), where ε is the exploration

parameter.

Step 5: Query Execution and Feedback

• Execute the selected action in the join query execution

environment.

• Measure the performance metric, such as query

execution time or cost, for the executed join plan.

• Calculate the immediate reward based on the

performance metric using a suitable reward function.

o Performance Metric: M = f(q, p), where M represents

the performance metric, q is the join query, and p is

the executed join plan.

o Immediate Reward: R = f(M), where R represents the

immediate reward based on the performance metric.

o Reward Function: R = f(M), where f represents the

reward function mapping the performance metric to

the reward value.

Step 6: Update Replay Memory

• Store the current state, selected action, immediate

reward, and the resulting state in the replay memory.

o Replay Memory Update: D ← D ∪ {(s, a, r, s')}, where

D represents the replay memory, s is the current state,

a is the selected action, r is the immediate reward, and

s' is the resulting state.

Step 7: Experience Replay

• Sample a batch of experiences from the replay

memory.

• Perform a backward pass through the deep Q-network

to update the weights using the loss function and

gradient descent.

o Sample Batch of Experiences: B = Sample(D,

batch_size), where B represents the batch of

experiences sampled from the replay memory D, and

batch_size is the desired size of the batch.

o Loss Function: L(θ) = ∑(s, a, r, s')∈B (Q(s, a) - (r + γ

* max(Q(s', a'))))^2, where θ represents the weights of

the deep Q-network, Q(s, a) represents the predicted

Comprehensive Investigation Of Join Query Optimization Using Dqn (Deep Q-Network), Ddqn (Double Deep Q-

Network), Genetic Algorithms And Hybrid Dqn-Ga And Ddqn –Ga

3299 Afr. J. Biomed. Res. Vol. 27, No.4s (November) 2024 Karthikeyan M P et al.

Q-value for state s and action a, r is the immediate

reward, γ is the discount factor, and max(Q(s', a'))

represents the maximum Q-value for the resulting state

s' over all possible actions a'.

o Gradient Descent: θ ← θ - α * ∇θL(θ), where α is the

learning rate and ∇θL(θ) represents the gradient of the

loss function with respect to the weights θ.

Step 8: Repeat Steps 3-7

• Repeat Steps 3-7 until the termination condition is met

(e.g., a certain number of iterations or convergence).

Step 9: Join Plan Selection

• Use the trained deep Q-network to select the optimal

join plan based on the learned Q-values.

• Select the join plan with the highest Q-value as the

optimized join plan for the given join query.

o Join Plan Selection: p* = argmax(Q(s, a)), where p*

represents the optimal join plan, Q(s, a) represents the

Q-value for state s and action a, and argmax selects the

action with the highest Q-value.

Step 10: Termination the algorithm

By discovering the best join plan to use, the Join Query

Optimization technique employing Deep Q-Network

(DQN) seeks to improve the execution of join queries.

The DQN and replay memory are first initialized by the

algorithm. The join queries and join plans are then

represented in an appropriate format and encoded with

pertinent properties. Features such as the current join

plan, selectivity estimates, and available join operators

are used to encapsulate the present status of the join

optimization issue. By computing Q-values through a

forward pass, the DQN is used to choose an action (join

operator or join order) depending on the present state.

The algorithm carries out the chosen action, assesses the

performance metric (such as the time it takes to run a

query), and then determines the instant reward using a

reward function. The replay memory stores the

experience (state, action, reward, and outcome state).

The approach uses a loss function and gradient descent

to update the DQN's weights on a regular basis by

sampling a batch of events from the replay memory. Up

to convergence, this procedure iteratively continues. The

best join plan is then chosen by the trained DQN by

choosing the action with the highest Q-value. Overall,

this approach makes use of deep reinforcement learning

to enhance database system effectiveness and optimize

join query execution [12].

IV. JOIN QUERY OPTIMIZATION USING

DOUBLE DEEP Q-NETWORK

 In order to solve the overestimation of Q-values seen in

the original DQN method, DDQN is an extension of

DQN. It reduces overestimation bias by decoupling the

selection of actions from their assessment using two

different neural networks. When compared to DQN,

DDQN can offer more precise Q-value estimations,

perhaps resulting in better join order choices. The

computational burden brought on by DQN still affects

it, though. Heuristics or cost-based estimations are

frequently used in traditional optimization approaches,

which may not necessarily result in optimum solutions.

[13] [14] [15]. Deep reinforcement learning has

advanced, and there is considerable interest in using it

for join query optimization. The Double Deep Q-

Network (DDQN) is one such method that makes use of

the strength of deep Q-networks and experience replay

to boost the effectiveness and stability of the

optimization process. DDQN has the capacity to learn

and adapt to difficult join query optimization challenges

by fusing the capabilities of reinforcement learning and

neural networks, resulting in more precise and effective

query execution plans. In this study, we investigate and

evaluate the efficiency of Join Query Optimization

using DDQN, contrasting it with other deep

reinforcement learning techniques as well as

conventional optimization techniques. We seek to give

insights into the performance and advantages of DDQN

in developing join query optimization approaches

through rigorous tests and assessments.

Algorithm 2: Join Query Optimization using Double

Deep Q-Network (DDQN)

Step 1: Initialization

• Initialize the primary and target deep Q-networks with

random weights: θ_primary ← random initialization,

θ_target ← θ_primary

• Define the replay memory to store experiences for

training: D ← ∅

• Set the exploration and exploitation parameters, such

as epsilon for the epsilon-greedy policy: ε ← initial

exploration rate

Step 2: Query and Join Space Representation

• Represent the join queries and join plans in a suitable

format, such as a matrix or a graph.

• Encode the join queries and join plans with

appropriate features, such as selectivity, cardinality,

and join conditions.

Step 3: State Representation

• Encode the current state of the join optimization

problem using relevant features, such as the current

join plan, selectivity estimates, and available join

operators.

The state representation, denoted as s, can be defined as

a vector of features:

s = [f1, f2, f3, ..., fn],

Where fi represents a specific feature related to the join

optimization problem. These features can include:

o Current join plan: f1 represents the current join plan

chosen for the join query.

o Selectivity estimates: f2 represents the estimated

selectivity of each join predicate or condition.

o Available join operators: f3 represents the available

join operators that can be used in the join plan.

Step 4: Action Selection

• Use the primary deep Q-network to select an action

(join operator or join order) based on the current state.

Comprehensive Investigation Of Join Query Optimization Using Dqn (Deep Q-Network), Ddqn (Double Deep Q-

Network), Genetic Algorithms And Hybrid Dqn-Ga And Ddqn –Ga

3300 Afr. J. Biomed. Res. Vol. 27, No.4s (November) 2024 Karthikeyan M P et al.

• Calculate the Q-values for each possible action using

the primary deep Q-network's forward pass.

• Select the action with the highest Q-value or choose a

random action for exploration based on the

exploration-exploitation policy.

Given the current state s, the primary deep Q-network

(Q-network) can estimate the Q-values for each possible

action a using a forward pass:

Q(s, a; θ_primary) = Q-network(s, a; θ_primary),

Where θ_primary represents the weights of the primary

deep Q-network. The action selection can be done using

an exploration-exploitation policy, such as epsilon-

greedy, which selects the action with the highest Q-

value with a probability of 1 - ε, or a random action with

a probability of ε.

Step 5: Query Execution and Feedback

• Execute the selected action in the join query execution

environment.

• Measure the performance metric, such as query

execution time or cost, for the executed join plan.

• Calculate the immediate reward based on the

performance metric using a suitable reward function.

The performance metric, denoted as M(a), can be

measured for the executed join plan associated with

action a. This metric could be the query execution time,

cost, or any other relevant measure. The immediate

reward, denoted as r, can be calculated based on the

performance metric using a reward function R(a):

r = R(a) = f(M(a)),

Where f(M(a)) represents a mapping function that maps

the performance metric M(a) to a reward value. The

specific form of the reward function depends on the

optimization goal and the desired behavior of the join

query optimizer.

Step 6: Update Replay Memory

• Store the current state, selected action, immediate

reward, and resulting state in the replay memory.

The replay memory, denoted as D, is updated by adding

this transition to the memory:

D ← D ∪ {(s, a, r, s')}.

Let (s, a, r, s') represent a transition, where:

o s is the current state,

o a is the selected action,

o r is the immediate reward, and

o s' is the resulting state after executing the action a.

Step 7: Experience Replay

• Sample a batch of experiences from the replay

memory.

• Perform a backward pass through the primary deep Q-

network to update the weights using the loss function

and gradient descent.

• Update the target deep Q-network periodically by

copying the weights from the primary deep Q-

network.

o Compute the target Q-value, denoted as target, for

each sampled transition:

target = r + γ * max(Q(s', a'; θ_target)),

Where θ_target represents the weights of the target deep

Q-network and a' represents the action selected by the

target network for the next state s'.

o Compute the predicted Q-value, denoted as predicted,

for each sampled transition:

predicted = Q(s, a; θ_primary),

 Where θ_primary represents the weights of the

primary deep Q-network.

o Calculate the loss, denoted as L, using a suitable loss

function, such as the mean squared error:

L = 1/N * sum((target - predicted)^2),

 Where N is the batch size.

o Perform a backward pass through the primary deep Q-

network to update the weights using gradient descent:

θ_primary ← θ_primary - α * ∇(L; θ_primary),

Where α is the learning rate.

o Periodically update the target deep Q-network by

copying the weights from the primary deep Q-network:

θ_target ← θ_primary.

 Step 8: Repeat Steps 3-7 until convergence.

Step 9: Join Plan Selection

• Use the trained primary deep Q-network to select the

optimal join plan based on the learned Q-values.

• Select the join plan with the highest Q-value as the

optimized join plan for the given join query.

To select the optimal join plan, we evaluate the Q-

values for all possible actions (join plans) given the

current state s and choose the action with the highest Q-

value:

a_optimal = argmax(Q(s, a; θ_primary)),

Where a_optimal represents the selected optimal action

(join plan) with the highest Q-value. Let Q(s, a;

θ_primary) represent the Q-value function of the trained

primary deep Q-network, where s is the state and a is the

action.

Step 10: Return the optimized join plan.

The Join Query Optimisation using Double Deep Q-

Network (DDQN) technique is a multi-step process.

Initially, a replay memory is constructed to record

training events, and the primary and target deep Q-

networks are initialised with random weights. The join

plans and queries are suitably represented and encoded.

The algorithm then selects an action based on the main

deep Q-network, executes the query, receives feedback,

and calculates an instantaneous reward based on the

performance metric. With the current state, chosen

action, immediate reward, and resulting state, the

algorithm updates the replay memory. Gradient descent

is used to update the weights of the main deep Q-

network while sampling batches of events from the

replay memory.

The weights from the primary network are regularly

copied to the target deep Q-network. Finally, based on

the learnt Q-values, the best join plan is chosen using

the trained primary deep Q-network. The algorithm's

overall goal is to improve the performance of join

queries by repeatedly learning and updating the Q-

values to inform the choice of join operators and join

orders. This technique improves the stability and

Comprehensive Investigation Of Join Query Optimization Using Dqn (Deep Q-Network), Ddqn (Double Deep Q-

Network), Genetic Algorithms And Hybrid Dqn-Ga And Ddqn –Ga

3301 Afr. J. Biomed. Res. Vol. 27, No.4s (November) 2024 Karthikeyan M P et al.

learning effectiveness of the optimization process by

applying the Double Deep Q-Network (DDQN)

approach to join query optimization. It successfully

balances exploration and exploitation and reduces

overestimation bias, resulting in enhanced join query

execution efficiency. This is accomplished by using two

deep Q-networks and experience replay.

V.JOIN QUERY OPTIMIZATION USING

GENETIC ALGORITHMS

Particularly for big and sophisticated queries, traditional

optimization approaches frequently find it difficult to

manage the combinatorial search space of join orders

and operator selections. The use of Genetic Algorithms

(GAs) to solve these optimization issues has shown

promise. The concepts of natural selection and evolution

serve as the foundation for GAs, which employ a

population-based search technique to repeatedly explore

the search space and identify nearly ideal solutions [16].

In order to assess the usefulness and efficiency of GAs

in identifying the best join plans, this study offers an

investigation of Join Query Optimization using GAs. In

order to evaluate their influence on the optimization

process, the study investigates alternative genetic

operators, fitness functions, and encoding strategies.

The findings gave database managers and academics

studying query optimization useful information on the

advantages and disadvantages of GAs in join query

optimization. A population-based search technique

called genetic algorithms was inspired by natural

evolution. A GA would represent various join orders as

individuals in a population when used in the context of

join query optimization. To create new join orders, the

individuals go through genetic procedures like crossover

and mutation. The query cost is used to evaluate fitness,

and the procedure is repeated until the best join order is

identified. GA has the benefit of swiftly navigating a big

search field and is able to deal with noise in the fitness

environment [17] [18]. However, it can be delicate to

parameter settings and may have trouble with very large

join spaces.

Algorithm 3: Join Query Optimization using

Genetic Algorithm

Step 1: Initialization

• Initialize a population P with random individuals

representing potential join plans.

• Set the maximum number of generations

(max_generations), maximum population size

(max_population), and other algorithm parameters.

P = {individual_1, individual_2, ..., individual_n},

Where P represents the population, and individual_i

represents the i-th join plan in the population. The

population size is determined by n, which is the

maximum population size specified.

Step 2: Fitness Evaluation

• Evaluate the fitness of each individual in the

population based on a fitness function.

• Calculate the fitness value, denoted as F, which

represents the quality of the join plan.

o For each individual in the population, calculate its

fitness value using the fitness function:

F = fitness (individual),

where F represents the fitness value and individual

represents an individual join plan in the population. The

fitness function quantifies the quality or performance of

the join plan based on specific criteria, such as

execution time, resource utilization, or cost estimation

accuracy. The fitness value serves as a measure of how

well the join plan performs compared to other

individuals in the population.

Step 3: Selection

• Select individuals from the population for the next

generation based on their fitness values.

• Apply selection techniques such as tournament

selection or roulette wheel selection.

o Calculate the selection probability for each individual

in the population:

P_selection(individual) = F(individual) / sum(F),

Where P_selection represents the selection probability,

F(individual) is the fitness value of the individual, and

the sum(F) is the sum of fitness values for all

individuals in the population.

o Select individuals for the next generation based on

their selection probabilities. This selection process can

be performed using various strategies, such as

tournament selection or roulette wheel selection, where

individuals with higher selection probabilities have a

higher chance of being selected.

Step 4: Crossover

• Perform crossover operations between selected

individuals to create offspring.

• Combine genetic material from parent individuals to

generate new join plans.

o Choose parent individuals for crossover based on the

selected individuals.

o Apply crossover operators to create offspring

individuals. One commonly used crossover operator is

single-point crossover, where a random point is selected

along the genetic material (join plan representation) of

the parents. The genetic material beyond that point is

swapped between the parents to create two offspring

individuals. Single-Point Crossover:

Offspring_1 = Parent_1[:crossover_point] +

Parent_2[crossover_point:]

Offspring_2 = Parent_2[:crossover_point] +

Parent_1[crossover_point:]

Where Offspring_1 and Offspring_2 represent the

resulting offspring individuals, Parent_1 and Parent_2

are the selected parent individuals, and crossover_point

is the randomly chosen point for crossover along the

genetic material. The genetic material before the

crossover point is taken from one parent, and the genetic

material after the crossover point is taken from the other

parent to create the offspring individuals.

Step 5: Mutation

• Introduce random changes to the offspring individuals

to promote exploration of the search space.

Comprehensive Investigation Of Join Query Optimization Using Dqn (Deep Q-Network), Ddqn (Double Deep Q-

Network), Genetic Algorithms And Hybrid Dqn-Ga And Ddqn –Ga

3302 Afr. J. Biomed. Res. Vol. 27, No.4s (November) 2024 Karthikeyan M P et al.

• Apply mutation operators to modify certain

characteristics or parameters of the join plans.

o Select offspring individuals for mutation.

o Apply mutation operators to modify the join plans.

One common mutation operator is bit-flip mutation,

where a random bit in the genetic material (join plan

representation) of an individual is flipped, introducing a

small change in the join plan. Bit-Flip Mutation:

Mutated_individual = Individual[:mutation_point] + (1 -

Individual[mutation_point]) +

Individual[mutation_point+1:]

Where Mutated_individual represents the resulting

mutated individual, Individual is the selected offspring

individual, and mutation_point is the randomly chosen

point for mutation along the genetic material. The bit at

the mutation point is flipped (from 0 to 1 or from 1 to 0)

to introduce a small change in the join plan. Other

mutation operators, such as swap mutation or inversion

mutation, can also be applied based on the specific

encoding and characteristics of the join plan

representation.

Step 6: Replacement

• Replace a portion of the population with the newly

created offspring individuals.

• Select individuals from the population to be replaced

based on certain replacement strategies, such as

elitism or generational replacement.

o Select individuals from the population to be replaced.

The replacement strategy can vary, but common

approaches include elitism, where the best individuals

are preserved in the population, or generational

replacement, where the entire population is replaced

by the offspring individuals.

o Replace the selected individuals with the newly

created offspring individuals, ensuring the population

size remains constant. This step ensures that the

population evolves over generations and adapts to

better join plans based on the performance and quality

of the offspring individuals.

Step 7: Termination

• Check if termination criteria are met, such as reaching

a maximum number of generations or achieving a

satisfactory fitness level. If the termination criteria are

met, stop the algorithm; otherwise, go to Step 2. The

algorithm continues to iterate through Steps 2 to 7 until

the termination criteria are satisfied.

 The goal of the search-based technique for join query

optimization using genetic algorithms is to identify the

best join strategy for processing a query in a relational

database. Initializing a population of probable join plans

is the first step in the algorithm. In the population, each

join plan is portrayed as an individual [19]. Each

person's fitness is assessed using a fitness function that

gauges the effectiveness or performance of the Join

plan. The next phase is selection, which involves

picking people for reproduction based on fitness values.

To produce new offspring, operators for crossover and

mutation are applied to the chosen individuals. In

contrast to mutation, which introduces random

alterations to encourage the exploration of the search

space, crossover integrates the genetic material from the

parents. The last phase involves replacing a section of

the population with individuals from the newly

produced children. Until a termination condition is

satisfied, such as reaching a maximum number of

generations or attaining the target level of fitness, this

process keeps on for a number of generations. The

method looks for join plans that optimize query

performance based on the provided fitness criteria

through the iterative development of the population.

VI. HYBRID APPROACHES: DQN-GA AND

DDQN-GA

In join query optimization, hybrid approaches combine

different optimization techniques to leverage their

respective strengths and address their limitations. Two

hybrid approaches that have been explored are the

combination of Deep Q-Network (DQN) with Genetic

Algorithms (GA) and the combination of Double Deep

Q-Network (DDQN) with Genetic Algorithms (GA).

6.1. DQN-GA: Combining Deep Q-Network with

Genetic Algorithms

The DQN-GA hybrid technique combines the search

and optimization skills of Genetic Algorithms (GA)

with the reinforcement learning capabilities of Deep Q-

Networks (DQN). The idea is to take use of both

approaches' skills for exploration and exploitation. The

DQN component of DQN-GA is used to learn and

approximatively determine the Q-values of various join

operations. The DQN network gets the join query's

current state and produces Q-values for every potential

join operation. During the genetic algorithm

optimization phase, these Q-values direct the

investigation and utilization of join operations. The GA

component uses genetic operators including selection,

crossover, and mutation to act on a population of

candidate join orders or execution plans. The DQN is

used to assess each candidate solution's fitness in order

to calculate the anticipated cumulative rewards. The GA

develops the population to discover improved join query

optimization strategies by examining the join order

search space while being led by the Q-values supplied

by the DQN.

6.2.DDQN-GA: Combining Double Deep Q-Network

with Genetic Algorithms

The DDQN-GA hybrid technique improves on the

DQN-GA approach while including DDQN's (Double

Deep Q-Networks) improvements. With DDQN, the

overestimation bias problem in conventional DQN

algorithms is resolved, leading to more precise Q-value

estimations. In DDQN-GA, a DDQN that has a separate

target network utilized for Q-value estimate is employed

in place of the DQN component. The target network

aids in reducing variation in Q-value predictions and

stabilizing the learning process. The DDQN-GA hybrid

technique makes use of the enhanced Q-value

estimations to direct the exploration and application of

Comprehensive Investigation Of Join Query Optimization Using Dqn (Deep Q-Network), Ddqn (Double Deep Q-

Network), Genetic Algorithms And Hybrid Dqn-Ga And Ddqn –Ga

3303 Afr. J. Biomed. Res. Vol. 27, No.4s (November) 2024 Karthikeyan M P et al.

the genetic algorithm in order to identify the best join

query optimization options.

6.3. Benefits and Advantages of Hybrid Approaches

In terms of join query optimization, hybrid methods like

DQN-GA and DDQN-GA have various advantages:

• Combining strengths: Hybrid systems can take use of

the exploration powers of reinforcement learning and

the optimization capabilities of genetic algorithms by

integrating several techniques.

• Faster convergence: The convergence rate and

efficacy of the optimization process can both be

improved by combining various techniques.

• Handling difficult situations: Hybrid methods are

very helpful in tackling complex join query

optimization issues that might not be effectively

resolved by individual strategies alone.

• Adaptability: Hybrid techniques can adjust to

changes in the workload, database environment, or

query characteristics, resulting in a gradual

improvement in performance.

 Joins query optimization research continues to focus on

hybrid techniques, with attempts being made to improve

their designs, optimize their parameters, and assess their

performance in diverse real-world circumstances.

VII.PERFORMANCE EVALUATION

Deep Q-Network (DQN), Double Deep Q-Network

(DDQN), Genetic Algorithms (GA), and hybrid DQN-

GA and DDQN-GA are used to optimise join queries.

The Join Order Benchmark (JOB), a collection of

queries utilised in earlier evaluations of query

optimizers, is employed in this experiment. The

benchmark uses the IMDB dataset for 113 query

instances over 33 query forms. A virtual computer that

already has the dataset loaded into it has been

made.There are 13 a to d relations that each query

connects. 4 more randomly chosen inquiries are also

included in our testing query collection, along with all

occurrences of one randomly chosen query template.

PostgreSQL [20] on a virtual machine with two cores,

eight gigabytes of RAM, and a maximum shared buffer

pool size of one gigabyte resulted in a database with a

total size of 11GB (all primary and foreign keys are

indexed). Instead of having PostgreSQL use its own join

enumerator, we configured it to use the join ordering

produced by join.

Scenario 1: In this research, we analyze the Join Order

Benchmark (JOB), which employs 113 sophisticated

join queries and operates on real-world data rife with

correlations. Using a complicated, real-world data set

and plausible multi-join queries, we empirically review

the key elements in the traditional query optimizer

design. We selected the Internet Movie Data Base

(IMDB) as a synthetic data collection. It is jam-packed

with details on films, as well as associated information

about actors, directors, production companies, etc. The

information is offered as text files for free2 non-

commercial use. In addition, we converted the text files

into a relational database using the open-source

imdbpy3 software. Example JOB 13d determines the

reviews and dates of all films made by US firms.

SELECT MIN(cn.name), MIN(mi.info),

MIN(mi_idx.info) FROM company_name cn,

company_type ct, info_type it, info_type it2, title t,

kind_type kt, movie_companies mc,

movie_info mi, movie_info_idx mi_idx WHERE

cn.country_code = ’[us]’

AND ct.kind = ’production companies’ AND it.info =

’rating’ AND it2.info = ’release dates’

AND kt.kind = ’movie’ AND .. --(11 join predicates/see

Fig. 4)

 In Fig. 2, the join graph for query 13d is displayed. The

graph's solid edges are key/foreign key edges (1: n),

with the arrowhead pointing to the side of the primary

key. Foreign key/foreign key joins (n: m) are

represented by dotted edges and arise as a result of

transitive join predicates.

Join graph for job query 13a - d

It offers details on the recently formed relationship

between a production firm and a movie studio. A nested

loop join of orders, customers, and nations is one option

from here. The information about the action and state

must be represented as a fixed length vector that the

trained neural network model expects as input in order

to calculate the Q-value of doing this action in the

current state. For our model, the action and query in this

example would be represented as:

Comprehensive Investigation Of Join Query Optimization Using Dqn (Deep Q-Network), Ddqn (Double Deep Q-

Network), Genetic Algorithms And Hybrid Dqn-Ga And Ddqn –Ga

3304 Afr. J. Biomed. Res. Vol. 27, No.4s (November) 2024 Karthikeyan M P et al.

In the join action, the tables from the left and right input

relations are 1-hot encoded. The first four left relation

and the next four right relations are equivalent. The first

two rows are 1 whereas the third and fourth are 0, as

orders and customers are in the left relation. The

physical join operator, which can be a mergejoin,

hashjoin, or nested loop join, is then 1-hot encoded. The

PostgreSQL optimizer then computes estimates for the

left and right input relations, which are then encoded. In

the final query result, encode the relations that belong

there. Whether there is an equijoin predicate between

each of the three sets of tables is the final encoding.

According to the three equijoin predicates in the query,

three of these rows are not zero. The findings help to

clarify the advantages of DQN, DDQN, GA, and hybrid

techniques for optimizing join queries and offer

suggestions for choosing the best methodology for Join

data.

Query Execution Time: In join query optimization, the

term "query execution time" refers to the time needed to

process and run a join query. It is an essential

performance indicator that is used to assess the

efficiency and potency of join query optimization

strategies.

Query Execution Time = Planning Time + Optimization

Time + Data Retrieval Time + Result Generation Time

The examination of join query optimization methods

employing DQN, DDQN, Genetic Algorithms (GA),

and their hybrid versions (DQN-GA and DDQN-GA)

yielded important new information about the effects of

these methods on query execution times. The outcomes

supported the efficacy of DQN, DDQN, GA, and their

hybrid forms in reducing join query execution times.

Figure 2 demonstrates that the PostgreSQL model's

mean execution time (represented by the Y mark in

graphs) is longer than the DQN model's. The benchmark

queries' average execution times, using the suggested

DQN-GA and DDQN-GA models, are 9.5 and 8.7 ms

and 16.6 and 15.7 ms, respectively, for PostgreSQL.

Additionally, in a small fraction of queries, the DQN-

GA and DDQN-GA model performs extraordinarily

better than PostgreSQL. For instance, using the plan

provided by the DQN-GA and DDQN-GA models,

Query ''13b'' in the benchmark queries takes 10.78 and

9.35 ms as opposed to the plan generated by

PostgreSQL, which takes 14.4 ms. The DQN-GA and

DDQN-GA model provides query plans that are, on

average, 35% less costly for the 113 queries in the

benchmark queries than the PostgreSQL optimizer.

Query Latency: In join query optimization, the term

"query latency" refers to the whole amount of time

needed to process and run a join query, including the

time spent on designing, optimizing, and running the

query itself. It is a crucial performance indicator used to

assess how effectively join query optimization strategies

perform.

Query Latency = Planning Time + Optimization Time +

Execution Time

Planning Time is required to analyze the query and

create a query execution plan is called time. It entails

Comprehensive Investigation Of Join Query Optimization Using Dqn (Deep Q-Network), Ddqn (Double Deep Q-

Network), Genetic Algorithms And Hybrid Dqn-Ga And Ddqn –Ga

3305 Afr. J. Biomed. Res. Vol. 27, No.4s (November) 2024 Karthikeyan M P et al.

actions like interpreting the query, figuring out which

tables are involved, figuring out the join requirements,

and choosing an initial join order. The time needed for

optimization is the amount of time needed to discover

the most effective join order for the query execution

plan. It entails investigating numerous join order options

and calculating the cost of every possible join plan. In

terms of query latency, the hybrid versions DQN-GA

and DDQN-GA performed even better than the separate

approaches. Each test query in Figure 3 is run 20 times

with a cold cache. The lowest, maximum, and median

latency improvements are displayed on the graph. Every

time, the join ordering plans generated by DQN-GA and

DDQN-GA perform better than or are equal to those

generated by PostgreSQL. DQN-GA and DDQN-GA

are therefore able to develop plans with shorter

execution times (and not merely shorter costs as

compared to the cost model).

Optimization Latency:

The time it takes to carry out the optimization process

and produce an optimized join plan is referred to as

optimization latency in join query optimization. It

indicates the time needed to consider various join order

options, determine expenses, and choose the most

effective join plan.

Optimization Latency = Planning Time + Optimization

Time

By effectively examining the join space and choosing an

optimized join plan that lowers the query's total

execution cost, the objective is to minimize the

optimization delay. Figure 5 displays the optimization of

grouped by number of relations by comparing the

optimization latencies of different techniques. Points

above the black curve indicate questions for which

DQN-GA and DDQN-GA had faster optimization times

than DQN, DDQN, GA. Each point represents one of

the queries in the JOB.

Scalability: The capacity of an optimization approach

to manage growing query complexity and data

quantities while retaining effective performance is

referred to as scalability in join query optimization. It

measures how effectively the optimization strategy can

scale and adapt as the volume and sophistication of the

data and the complexity of the queries increase.

Scalability in join query optimization may be calculated

using the following formula:

Scalability = (Size of Data / Execution Time) * (1 /

Query Complexity)

Where, Measured commonly in terms of the number of

tuples or the size of the database, size of data refers to

the amount of data that is involved in the join query.

Execution Time: The amount of time required by the

Comprehensive Investigation Of Join Query Optimization Using Dqn (Deep Q-Network), Ddqn (Double Deep Q-

Network), Genetic Algorithms And Hybrid Dqn-Ga And Ddqn –Ga

3306 Afr. J. Biomed. Res. Vol. 27, No.4s (November) 2024 Karthikeyan M P et al.

optimization strategy to produce a join plan that is

optimized and to run the query. Query Complexity: The

degree to which a query is difficult, as measured by

elements like the quantity of tables, the nature of join

conditions, the number of predicates, and the amount of

intermediate results. The scalability score shows how

well the DQN-GA and DDQN-GA Algorithms handle

bigger data sets and more difficult queries, 78% and

81%, respectively.As the execution time decreases in

relation to the quantity of the data and the complexity of

the query, a scalability value reveals that DDQN is

better able to scale than GA, DQN, and GA at 75.4%,

73.3%, and 73.3% respectively. The capacity of join

query optimization techniques such as DQN, DDQN,

GA, Hybrid DQN-GA, and DDQN-GA to handle more

complicated queries and bigger datasets while retaining

efficient performance is examined through the lens of

scalability.

Resource Utilization: The effective use of computing

resources throughout the optimization process is

referred to as resource utilization in join query

optimization. It measures how well the optimization

method makes use of the CPU, RAM, and disc I/O to

produce optimized join plans. The formula for

calculating resource utilization in join query

optimization can be expressed as:

Resource Utilization = (Time Spent on Actual

Optimization / Total Execution Time) * (1 / Resource

Consumption)

 The efficiency of the join query optimization

algorithms DQN (56.76%), DDQN(62.11%),

GA(50.31%), Hybrid DQN-GA(71.70%), and DDQN-

GA(73.21%) in using computing resources throughout

the optimization process is shown by the examination of

resource utilization. Resource utilization assesses how

well these methods make use of the CPU, RAM, and

disc I/O that are at their disposal to provide optimized

join plans.

VIII. CONCLUSION

 Using Deep Q-Networks (DQN), Double Deep Q-

Networks (DDQN), Genetic Algorithms (GA), and

hybrid DQN-GA and DDQN-GA techniques, we

conducted a thorough examination of join query

optimization in this research article. The goal was to

assess how well these strategies worked to decrease

query execution time and increase resource use. Our

experimental analyses, carried out on several benchmark

datasets, have produced important results. First of all,

compared to conventional methods, DQN-based

optimization strategies performed better. The DQN and

DDQN algorithms successfully trained to make the best

judgments when choosing join ordering and join

procedures by framing join query optimization as a

Markov Decision Process (MDP). The speed at which

queries were executed significantly increased as a result.

Additionally, the use of Genetic Algorithms as an

alternate method of examining join query plans' search

spaces yielded encouraging results. The use of

evolutionary ideas in the GA-based optimization

showed its capacity to provide effective join designs.

The performance was further enhanced when paired

with DQN and DDQN using the hybrid DQN-GA and

DDQN-GA techniques, demonstrating the benefits of

fusing reinforcement learning and evolutionary

algorithms. We were able to get important insights from

the performance analyses carried out on the benchmark

datasets, which mirrored actual join query

circumstances. We looked at how the performance of

the optimization strategies was impacted by variables

including database size, query complexity, and

cardinality estimation accuracy. The results present

options for further investigation, such as expanding the

hybrid methods with further optimization techniques or

adding other machine learning techniques. We can

increase the efficacy and efficiency of database

management systems in managing complicated join

operations by continually enhancing join query

optimization.

IX.REFERENCES

1. Viktor Leis, Andrey Gubichev, Atanas Mirchev,

Peter Boncz, Alfons Kemper, and Thomas

Neumann. "How good are query optimizers, really?"

Proceedings of the VLDB Endowment, 9(3):204-

215, 2015.

2. Wei Wang et al. Database Meets Deep Learning:

Challenges and Opportunities. SIGMOD Record,

2016.

3. Kostas Tzoumas et al. A reinforcement learning

approach for adaptive query processing. In A DB

Technical Report, 2008.

4. Sanjay Krishnan, Zongheng Yang, Ken Goldberg,

Joseph M. Hellerstein, and Ion Stoica. 2018.

Learning to Optimize Join Queries With Deep

Reinforcement Learning. CoRR abs/1808.03196

(2018). arXiv:1808.03196

5. Ryan Marcus et al. Deep reinforcement learning for

join order enumeration. CoRR, 2018.

6. Thomas Fösel, Petru Tighineanu, Talitha Weiss, and

Florian Marquardt. Reinforcement learning with

neural networks for quantum feedback. Physical

Review X, 8(3):031084, 2018.

7. Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and

Dale Schuurmans. Bridging the gap between value

and policy based reinforcement learning. In

Advances in Neural Information Processing

Systems, pp. 2775–2785, 2017

8. Hado Van Hasselt, Arthur Guez, and David Silver.

Deep reinforcement learning with double Q learning.

In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 30, 2016.

9. Marcus, R., Papaemmanouil, O.: Deep

reinforcement learning for join order enumeration.

aiDM'18 (2018)

10. Sibylle D Muller, Nicol N Schraudolph, and Petros

D Koumoutsakos. 2002. Step size adaptation in

evolution strategies using reinforcement learning. In

Proceedings of the 2002 Congress on Evolutionary

Computation. CEC’02 (Cat. No. 02TH8600), Vol. 1.

IEEE, 151–156.

Comprehensive Investigation Of Join Query Optimization Using Dqn (Deep Q-Network), Ddqn (Double Deep Q-

Network), Genetic Algorithms And Hybrid Dqn-Ga And Ddqn –Ga

3307 Afr. J. Biomed. Res. Vol. 27, No.4s (November) 2024 Karthikeyan M P et al.

11. J. Ortiz, M. Balazinska, et al. Learning State

Representations for Query Optimization with Deep

Reinforcement Learning. In DEEM, 2018.

12. Lee, K.M.; Kim, I.; Lee, K.C. DQN-based join order

optimization by learning experiences of running

queries on spark SQL. In Proceedings of the

International Conference on Data Mining

Workshops (ICDMW), Sorrento, Italy, 17–20

November 2020.

13. Van Hasselt, H.; Guez, A.; Silver, D. Deep

reinforcement learning with double q-learning. In

Proceedings of the AAAI Conference on Artificial

Intelligence, Phoenix, AZ, USA, 12–17 February

2016; Volume 30.

14. Lee, K.M.; Kim, I.; Lee, K.C. DQN-based join order

optimization by learning experiences of running

queries on spark SQL. In Proceedings of the

International Conference on Data Mining

Workshops (ICDMW), Sorrento, Italy, 17–20

November 2020.

15. Ohnishi, S., Uchibe, E., Yamaguchi, Y., Nakanishi,

K., Yasui, Y., Ishii, S.: Constrained deep q-learning

gradually approaching ordinary q-learning. Frontiers

in Neurorobotics 13, 103 (2019)

16. Mirjalili, S. Genetic Algorithm. In Evolutionary

Algorithms and Neural Networks; Springer: Cham,

Germany, 2019; pp. 43–55.

17. V. Singh, and V. Mishra. Distributed Query Plan

generation using Aggregation based Multi-Objective

Genetic Algorithm, Proceedings of the 2014

International Conference on Information and

Communication Technology for Competitive

Strategies, ACM, New York, USA, 2014. Article 26,

8 pages.

18. James E Pettinger and Richard M Everson. 2002.

Controlling genetic algorithms with reinforcement

learning. In Proceedings of the 4th Annual

Conference on Genetic and Evolutionary

Computation. 692–692.

19. S. V. Chande, and M. Sinha. Genetic optimization

for the join ordering problem of database queries,

Annual IEEE India Conference, Hyderabad, 2011,

pp. 1-5.

20. The PostgreSQL Global Development Group.

PostgreSQL: TheWorld’s Most Advanced Open

Source Database[EB/OL]. Available online:

http://www.postgresql.org/

21. https://github.com/gregrahn/join-order-benchmark

