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Abstract: Effective query optimization is essential for improving database management system performance. Using a 

variety of cutting-edge approaches, including Deep Q-Networks (DQN), Double Deep Q-Networks (DDQN), Genetic 

Algorithms (GA), and Hybrid DQN-GA and DDQN-GA, we present a thorough examination of join query optimization 

in this research article. In relational databases, join queries are frequently used to merge data from several tables. The 

issue of optimizing join queries to reduce response time and resource use is still difficult. The reinforcement learning-

inspired DQN and DDQN algorithms offer a framework for teaching agents to make the best judgments possible in 

dynamic situations. In order to discover effective query execution techniques, we use the power of DQN and DDQN to 

formulate join query optimization as a Markov Decision Process (MDP). We also present genetic algorithms as a 

different strategy for searching the space of join query plans. In this study, we examine the query execution times and 

resource use of DQN, DDQN, GA, and hybrid DQN-GA and DDQN-GA approaches. The efficacy of each strategy is 

evaluated experimentally on a wide range of Join Order benchmark (JOB) datasets. Our findings show that as compared 

to conventional methods, hybrid DDQN-GA based techniques significantly enhance query optimization. In order to 

maximize the benefits of both algorithms, we also explore the pairing of DQN and GA. The hybrid DQN-GA technique 

outperforms individual algorithms in terms of Query Execution Time, Query Latency, Resource Utilization, 

Optimization Latency, and Join Query Performance; demonstrating greater performance in optimizing joins queries. 

Similarly, the hybrid DDQN-GA approach also presents promising results.     
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I.INTRODUCTION  

In a relational database management system (RDBMS), 

join query optimization is the process of choosing the 

most effective execution plan for queries including join 

procedures. The Join operation combines the rows from 

the various tables when there are many tables involved 
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in the query. The goal of join query optimization is to 

reduce computational overhead and boost the efficiency 

of these join processes. When working with huge 

datasets, join procedures in database systems may be 

computationally costly. Database systems may execute 

queries more quickly by optimizing the join queries, 

which enables applications to deliver timely and 

responsive results to end users [1]. In situations where 

complicated queries or queries involving many tables 

are typical, join query optimization is very important. 

These queries are often used in decision support 

systems, business intelligence software, and data 

analytics, all of which require excellent query 

processing in order to analyze data effectively and make 

decisions [2]. 

A few advantages of effective join query optimization 

are [3]: 

• Shorter query processing time: By choosing the best 

join technique and execution plan, the overall query 

processing time may be cut in half, resulting in a more 

responsive system. 

• Better resource utilization: By ensuring optimum 

use of system resources including CPU, memory, and 

disc I/O, join query optimization enhances scalability 

and efficiency. 

• Improved user experience: By giving users prompt 

access to desired information, quicker query response 

times improve user experience. 

• Enhanced system throughput: By allowing the 

database system to accommodate more concurrent 

queries, optimized join queries enhance the system's 

overall throughput and performance. 

 

Overall, join query optimization is essential for 

maximizing the effectiveness and speed of database 

systems, enabling businesses to properly utilize their 

data and extract insightful knowledge from sizable 

databases. 

 

Challenges in Join Query Optimization 

For successful query processing, join query optimization 

offers a number of issues that must be resolved [4]. 

These difficulties include: 

• Query Complexity: When numerous tables are 

involved and various join criteria need to be fulfilled, 

join queries can become very complicated. Finding the 

best execution strategy is difficult because of the 

combinatorial proliferation of join orders and join 

algorithms that might be used. 

• Cost Prediction: For choosing the most effective 

execution strategy, it is essential to accurately estimate 

the costs of various join procedures. However, due to 

variables in data distribution, errors in statistics, and 

dynamic changes in the database environment, cost 

estimation might be difficult. Inaccurate cost estimates 

may result in execution plans that are less than ideal 

and poor query performance. 

• Scalability of the optimizer: Join query optimization 

gets more difficult as database size and query 

complexity increase. In a fair length of time, 

optimizers must sort through a huge number of 

alternative join pathways and select the optimum 

course of action. The search space grows 

exponentially as the number of tables and joins criteria 

rises, making the optimization procedure 

computationally costly. 

• Join Cardinality assessment: For cost assessment 

and plan selection, it is essential to estimate the 

cardinality (number of rows) arising from a join 

operation. However, when join predicates contain 

complicated conditions, correlations, or inequalities, 

correct cardinality estimate becomes challenging. The 

execution of queries inefficiently and improper join 

techniques can both be caused by inaccurate 

cardinality estimations. 

• Dynamic optimization: Database environments vary 

over time, affecting the workload, statistics, and 

distribution of data. To maintain peak performance, 

the optimizer must respond to these changes and 

dynamically modify the execution plans. However, it 

might be difficult to dynamically optimize join queries 

while maintaining minimum query interruption. 

• Join Order Optimization: How the tables are 

connected may have a big influence on how fast a 

query runs. It is an NP-hard task to choose the best 

join order from the increasingly huge search space. 

The ideal join order is approximated by traditional 

query optimizers using heuristics and cost-based 

methods, but identifying the globally optimum 

solution is still difficult [5]. 

• Index Selection: Effective usage of indexes is 

essential for optimizing join queries. It can be difficult 

to choose the right indexes for join predicates and 

reduce the amount of index lookups, though. To 

choose the best index, the optimizer must take into 

account the distribution of the data, the cost of index 

access, and the selectivity of the predicates. 

 

Advanced algorithms, statistical models, and 

optimization methods are needed to tackle these 

problems. To increase join query optimization and get 

beyond these obstacles, researchers and practitioners are 

always coming up with new strategies. 

Join query optimization; in particular, which entails 

choosing the best join algorithms and the best join order 

in order to reduce execution time and resource use.  The 

use of genetic algorithms (GAs) to solve this 

optimization challenge is a potential solution. This 

article examines the use of a genetic algorithm for join 

query optimization and provides a summary of the 

essential procedures. In order to explore the solution 

space and identify nearly optimum query plans, genetic 

algorithms provide a potent method for join query 

optimization. It is feasible to find effective join orders 

and selections by specifying suitable chromosomal 

representations, fitness functions, and genetic operators. 

Although a genetic algorithm for join query 

optimization has to be put into place with careful 

thought and system-specific modifications, it has a great 

deal of promise to enhance the efficiency of complicated 

database queries. However, recent developments in 

artificial intelligence have made it possible to 
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investigate innovative approaches.  This article 

examines the use of Deep Q Network (DQN), a 

reinforcement learning technology, for join query 

optimization, highlighting the possible advantages and 

explaining the essential procedures. By fusing deep 

learning methods with Q-learning, Deep Q Network 

(DQN) revolutionized reinforcement learning. It is a 

potent algorithm for resolving challenging decision-

making issues because of its capacity to manage high-

dimensional state spaces and learn from unprocessed 

sensory data. DQN offers a powerful framework for 

instructing agents to optimize their behaviors in 

dynamic contexts through the use of deep neural 

networks, experience replay, and target networks. DQN 

has been and will continue to be a crucial algorithm in 

the field of reinforcement learning thanks to continuous 

research and new developments.  In the context of 

choosing the best query execution plans, Deep Q 

Network (DQN) may also be used for query 

optimisation. Three widely used algorithms—DQN 

(Deep Q-Network), DDQN (Double Deep Q-Network), 

and Genetic Algorithms—have been used to optimise 

join queries. Each of these algorithms has unique 

strengths and shortcomings and takes a different angle 

on the issue. 

 

II. REINFORCEMENT LEARNING AND DEEP Q-

NETWORK (DQN) 

Reinforcement learning (RL) is a subfield of machine 

learning that focuses on learning optimal actions in an 

environment to maximize a cumulative reward. It is 

inspired by how humans and animals learn through trial 

and error interactions with their surroundings. In RL, an 

agent learns to make sequential decisions by exploring 

the environment, taking actions, and receiving feedback 

in the form of rewards or penalties [6]. 

The core components of reinforcement learning include: 

• Agent: The learner or decision-maker that interacts 

with the environment. 

• Environment: The external context in which the 

agent operates, providing feedback and state 

transitions based on agent actions. 

• State: The current representation of the environment, 

capturing relevant information for decision-making. 

• Action: The decision or choice made by the agent at a 

particular state. 

• Reward: The numerical feedback provided by the 

environment to reinforce or discourage certain actions. 

The agent aims to maximize the cumulative reward 

over time. 

 

Reinforcement learning algorithms utilize the concept of 

Markov Decision Processes (MDPs) to model the 

interaction between the agent and the environment. 

MDPs define the state space, action space, transition 

probabilities, and reward functions that characterize the 

environment [7]. 

 

Deep Q-Network (DQN) Algorithm 

A well-known reinforcement learning system called 

Deep Q-Network (DQN) combines Q-learning, a 

traditional RL algorithm, with deep neural networks. In 

2013, DeepMind unveiled DQN, which attracted 

attention for playing Atari games at a superhuman level.  

The main concept of DQN is to approximate the Q-

value function, which calculates the expected 

cumulative reward for performing a certain action in a 

specific condition [8]. The Q-network, a kind of neural 

network, is generally used to represent the Q-value 

function. The state is the Q-network's input, and its 

output is a projected vector of Q-values for each 

potential action.    

Experience replay and a target network are used by the 

DQN algorithm to increase stability and learning 

effectiveness. The agent's experiences (state, action, 

reward, and future state) are stored in a replay buffer 

during experience replay, which is randomly sampled 

throughout training to break correlations between 

successive events. In order to lower the target estimate 

errors, the target network is a distinct copy of the Q-

network that is routinely updated with the Q-network's 

weights.   DQN balances investigating novel activities 

with using the acquired information by using an 

exploration-exploitation method like epsilon-greedy. 

This enables the agent to find the best policies without 

becoming bogged down in inefficient behaviour. 

DQN is an approach for reinforcement learning that uses 

a neural network to simulate the Q-value function. To 

choose the best join order for a particular query, it 

employs an iterative process of exploration and 

exploitation [9]. DQN has the benefit of being able to 

handle dynamic and complicated settings, but it 

frequently needs a lot of training data and can be costly 

computationally.  The Q-learning technique and a neural 

network approximation are integrated in the Deep Q-

Network (DQN) formula. The predicted cumulative 

reward for performing a certain action in a specific 

condition is represented by the Q-value. The Q-network 

is a type of neural network used by the DQN method to 

estimate the Q-values. The DQN formula is as follows: 

Q(s, a) = R + γ * max(Q(s', a')) 

Where: 

• Q(s, a) represents the Q-value for state s and action a. 

• R is the immediate reward obtained after taking action 

a in state s. 

• γ (gamma) is the discount factor that determines the 

importance of future rewards. It ranges between 0 and 

1, where a value of 0 means only considering 

immediate rewards and a value of 1 means considering 

all future rewards. 

• max(Q(s', a')) represents the maximum Q-value among 

all possible actions a' in the next state s'. 

 

III. JOIN QUERY OPTIMIZATION USING DEEP 

Q-NETWORK 

The capacity of DQN to learn from experience and 

adapt to dynamic and complicated contexts is its main 

advantage when it comes to join query optimization. 

Traditional optimization methods frequently rely on 

static cost estimates and assumptions, which could not 

accurately reflect the complexities of executing queries 

in the actual world. DQN, on the other hand, has the 
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ability to adjust its policy based on previous query 

execution data in order to enhance performance over 

time [10] [11]. A DQN agent may understand the 

underlying patterns and linkages between tables as well 

as the effects of various join techniques on query 

execution speed by being trained to explore the state-

action space of join query optimization. By maximizing 

the projected long-term gains associated with execution 

time and resource utilization, the agent continually 

improves its decision-making process. DQN usage in 

join query optimization has a number of possible 

advantages. First, by identifying more effective join 

designs, it has the potential to outperform conventional 

optimization approaches. Additionally, it is flexible 

enough to adjust to shifting workloads and data 

distributions, continually enhancing query speed. 

Finally, because the DQN agent automatically learns to 

optimize queries based on past data, it lessens the need 

for human query tuning. In this study, we examine how 

DQN may be used to optimize join queries. We examine 

its efficacy in reducing query execution time and 

resource use as compared to conventional methods. We 

also examine how the performance of DQN-based 

optimization is impacted by variables like database size, 

query complexity, and cardinality estimate precision. 

 

Algorithm 1:  Join Query Optimization using Deep 

Q-Network (DQN) 

Step 1: Initialization 

• Initialize the deep Q-network with random weights: θ 

← random initialization 

• Define the replay memory to store experiences for 

training: D ← ∅ 

• Set the exploration and exploitation parameters, such 

as epsilon for the epsilon-greedy policy: ε ← initial 

exploration rate 

 

Step 2: Query and Join Space Representation 

• Represent the join queries and join plans in a suitable 

format, such as a matrix or a graph. 

• Encode the join queries and join plans with 

appropriate features, such as selectivity, cardinality, 

and join conditions. 

o Query Representation: Q = [q_1, q_2, ..., q_n], where 

q_i represents the i-th join query. 

o Join Plan Representation: P = [p_1, p_2, ..., p_m], 

where p_i represents the i-th join plan. 

o Join Query Encoding: q_i = [f_1, f_2, ..., f_k], where 

f_j represents the j-th feature of the join query. 

o Join Plan Encoding: p_i = [g_1, g_2, ..., g_l], where 

g_j represents the j-th feature of the join plan. 

 

Step 3: State Representation 

• Encode the current state of the join optimization 

problem. 

• Formulate the state representation using relevant 

features, such as the current join plan, selectivity 

estimates, and available join operators. 

o State Representation: S = [s_1, s_2, ..., s_p], where s_i 

represents the i-th feature of the state. 

o Join Plan Representation: s_i = [g_1, g_2, ..., g_l], 

where g_j represents the j-th feature of the current join 

plan. 

o Selectivity Estimate: s_i = f(e_1, e_2, ..., e_n), where 

e_k represents the estimate for the selectivity of join 

predicate k. 

o Available Join Operators: s_i = [o_1, o_2, ..., o_m], 

where o_j represents the j-th available join operator in 

the current state. 

 

Step 4: Action Selection 

• Use the deep Q-network to select an action (join 

operator or join order) based on the current state. 

• Calculate the Q-values for each possible action using 

the deep Q-network's forward pass. 

• Select the action with the highest Q-value or choose a 

random action for exploration based on the 

exploration-exploitation policy. 

o Q-value Calculation: Q(s, a) = fθ(s, a), where fθ 

represents the deep Q-network's forward pass. 

o Epsilon-Greedy Policy: π(a|s) = (1-ε) * argmax(Q(s, 

a)) + ε * random(a), where ε is the exploration 

parameter. 

 

Step 5: Query Execution and Feedback 

• Execute the selected action in the join query execution 

environment. 

• Measure the performance metric, such as query 

execution time or cost, for the executed join plan. 

• Calculate the immediate reward based on the 

performance metric using a suitable reward function. 

o Performance Metric: M = f(q, p), where M represents 

the performance metric, q is the join query, and p is 

the executed join plan. 

o Immediate Reward: R = f(M), where R represents the 

immediate reward based on the performance metric. 

o Reward Function: R = f(M), where f represents the 

reward function mapping the performance metric to 

the reward value. 

 

Step 6: Update Replay Memory 

• Store the current state, selected action, immediate 

reward, and the resulting state in the replay memory. 

o Replay Memory Update: D ← D ∪ {(s, a, r, s')}, where 

D represents the replay memory, s is the current state, 

a is the selected action, r is the immediate reward, and 

s' is the resulting state. 

 

Step 7: Experience Replay 

• Sample a batch of experiences from the replay 

memory. 

• Perform a backward pass through the deep Q-network 

to update the weights using the loss function and 

gradient descent. 

o Sample Batch of Experiences: B = Sample(D, 

batch_size), where B represents the batch of 

experiences sampled from the replay memory D, and 

batch_size is the desired size of the batch. 

o Loss Function: L(θ) = ∑(s, a, r, s')∈B (Q(s, a) - (r + γ 

* max(Q(s', a'))))^2, where θ represents the weights of 

the deep Q-network, Q(s, a) represents the predicted 
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Q-value for state s and action a, r is the immediate 

reward, γ is the discount factor, and max(Q(s', a')) 

represents the maximum Q-value for the resulting state 

s' over all possible actions a'. 

o Gradient Descent: θ ← θ - α * ∇θL(θ), where α is the 

learning rate and ∇θL(θ) represents the gradient of the 

loss function with respect to the weights θ. 

 

Step 8: Repeat Steps 3-7 

• Repeat Steps 3-7 until the termination condition is met 

(e.g., a certain number of iterations or convergence). 

 

Step 9: Join Plan Selection 

• Use the trained deep Q-network to select the optimal 

join plan based on the learned Q-values. 

• Select the join plan with the highest Q-value as the 

optimized join plan for the given join query. 

o Join Plan Selection: p* = argmax(Q(s, a)), where p* 

represents the optimal join plan, Q(s, a) represents the 

Q-value for state s and action a, and argmax selects the 

action with the highest Q-value. 

 

Step 10: Termination the algorithm 

By discovering the best join plan to use, the Join Query 

Optimization technique employing Deep Q-Network 

(DQN) seeks to improve the execution of join queries. 

The DQN and replay memory are first initialized by the 

algorithm. The join queries and join plans are then 

represented in an appropriate format and encoded with 

pertinent properties. Features such as the current join 

plan, selectivity estimates, and available join operators 

are used to encapsulate the present status of the join 

optimization issue. By computing Q-values through a 

forward pass, the DQN is used to choose an action (join 

operator or join order) depending on the present state. 

The algorithm carries out the chosen action, assesses the 

performance metric (such as the time it takes to run a 

query), and then determines the instant reward using a 

reward function. The replay memory stores the 

experience (state, action, reward, and outcome state). 

The approach uses a loss function and gradient descent 

to update the DQN's weights on a regular basis by 

sampling a batch of events from the replay memory. Up 

to convergence, this procedure iteratively continues. The 

best join plan is then chosen by the trained DQN by 

choosing the action with the highest Q-value. Overall, 

this approach makes use of deep reinforcement learning 

to enhance database system effectiveness and optimize 

join query execution [12]. 

 

IV. JOIN QUERY OPTIMIZATION USING 

DOUBLE DEEP Q-NETWORK 

 In order to solve the overestimation of Q-values seen in 

the original DQN method, DDQN is an extension of 

DQN. It reduces overestimation bias by decoupling the 

selection of actions from their assessment using two 

different neural networks. When compared to DQN, 

DDQN can offer more precise Q-value estimations, 

perhaps resulting in better join order choices. The 

computational burden brought on by DQN still affects 

it, though. Heuristics or cost-based estimations are 

frequently used in traditional optimization approaches, 

which may not necessarily result in optimum solutions. 

[13] [14] [15]. Deep reinforcement learning has 

advanced, and there is considerable interest in using it 

for join query optimization. The Double Deep Q-

Network (DDQN) is one such method that makes use of 

the strength of deep Q-networks and experience replay 

to boost the effectiveness and stability of the 

optimization process. DDQN has the capacity to learn 

and adapt to difficult join query optimization challenges 

by fusing the capabilities of reinforcement learning and 

neural networks, resulting in more precise and effective 

query execution plans. In this study, we investigate and 

evaluate the efficiency of Join Query Optimization 

using DDQN, contrasting it with other deep 

reinforcement learning techniques as well as 

conventional optimization techniques. We seek to give 

insights into the performance and advantages of DDQN 

in developing join query optimization approaches 

through rigorous tests and assessments. 

 

Algorithm 2:  Join Query Optimization using Double 

Deep Q-Network (DDQN) 

Step 1: Initialization 

• Initialize the primary and target deep Q-networks with 

random weights: θ_primary ← random initialization, 

θ_target ← θ_primary 

• Define the replay memory to store experiences for 

training: D ← ∅ 

• Set the exploration and exploitation parameters, such 

as epsilon for the epsilon-greedy policy: ε ← initial 

exploration rate 

 

Step 2: Query and Join Space Representation 

• Represent the join queries and join plans in a suitable 

format, such as a matrix or a graph. 

• Encode the join queries and join plans with 

appropriate features, such as selectivity, cardinality, 

and join conditions. 

 

Step 3: State Representation 

• Encode the current state of the join optimization 

problem using relevant features, such as the current 

join plan, selectivity estimates, and available join 

operators. 

The state representation, denoted as s, can be defined as 

a vector of features: 

s = [f1, f2, f3, ..., fn], 

Where fi represents a specific feature related to the join 

optimization problem. These features can include: 

o Current join plan: f1 represents the current join plan 

chosen for the join query. 

o Selectivity estimates: f2 represents the estimated 

selectivity of each join predicate or condition. 

o Available join operators: f3 represents the available 

join operators that can be used in the join plan. 

 

Step 4: Action Selection 

• Use the primary deep Q-network to select an action 

(join operator or join order) based on the current state. 
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• Calculate the Q-values for each possible action using 

the primary deep Q-network's forward pass. 

• Select the action with the highest Q-value or choose a 

random action for exploration based on the 

exploration-exploitation policy. 

Given the current state s, the primary deep Q-network 

(Q-network) can estimate the Q-values for each possible 

action a using a forward pass: 

Q(s, a; θ_primary) = Q-network(s, a; θ_primary), 

Where θ_primary represents the weights of the primary 

deep Q-network. The action selection can be done using 

an exploration-exploitation policy, such as epsilon-

greedy, which selects the action with the highest Q-

value with a probability of 1 - ε, or a random action with 

a probability of ε. 

 

Step 5: Query Execution and Feedback 

• Execute the selected action in the join query execution 

environment. 

• Measure the performance metric, such as query 

execution time or cost, for the executed join plan. 

• Calculate the immediate reward based on the 

performance metric using a suitable reward function. 

The performance metric, denoted as M(a), can be 

measured for the executed join plan associated with 

action a. This metric could be the query execution time, 

cost, or any other relevant measure. The immediate 

reward, denoted as r, can be calculated based on the 

performance metric using a reward function R(a): 

r = R(a) = f(M(a)), 

Where f(M(a)) represents a mapping function that maps 

the performance metric M(a) to a reward value. The 

specific form of the reward function depends on the 

optimization goal and the desired behavior of the join 

query optimizer. 

 

Step 6: Update Replay Memory 

• Store the current state, selected action, immediate 

reward, and resulting state in the replay memory. 

The replay memory, denoted as D, is updated by adding 

this transition to the memory: 

D ← D ∪ {(s, a, r, s')}. 

Let (s, a, r, s') represent a transition, where: 

o s is the current state, 

o a is the selected action, 

o r is the immediate reward, and 

o s' is the resulting state after executing the action a. 

 

Step 7: Experience Replay 

• Sample a batch of experiences from the replay 

memory. 

• Perform a backward pass through the primary deep Q-

network to update the weights using the loss function 

and gradient descent. 

• Update the target deep Q-network periodically by 

copying the weights from the primary deep Q-

network. 

o Compute the target Q-value, denoted as target, for 

each sampled transition: 

target = r + γ * max(Q(s', a'; θ_target)), 

Where θ_target represents the weights of the target deep 

Q-network and a' represents the action selected by the 

target network for the next state s'. 

o Compute the predicted Q-value, denoted as predicted, 

for each sampled transition: 

predicted = Q(s, a; θ_primary), 

   Where θ_primary represents the weights of the 

primary deep Q-network. 

o Calculate the loss, denoted as L, using a suitable loss 

function, such as the mean squared error: 

L = 1/N * sum((target - predicted)^2), 

   Where N is the batch size. 

o Perform a backward pass through the primary deep Q-

network to update the weights using gradient descent: 

θ_primary ← θ_primary - α * ∇(L; θ_primary), 

Where α is the learning rate. 

o Periodically update the target deep Q-network by 

copying the weights from the primary deep Q-network: 

θ_target ← θ_primary. 

 Step 8: Repeat Steps 3-7 until convergence. 

 

Step 9: Join Plan Selection 

• Use the trained primary deep Q-network to select the 

optimal join plan based on the learned Q-values. 

• Select the join plan with the highest Q-value as the 

optimized join plan for the given join query. 

To select the optimal join plan, we evaluate the Q-

values for all possible actions (join plans) given the 

current state s and choose the action with the highest Q-

value: 

a_optimal = argmax(Q(s, a; θ_primary)), 

Where a_optimal represents the selected optimal action 

(join plan) with the highest Q-value. Let Q(s, a; 

θ_primary) represent the Q-value function of the trained 

primary deep Q-network, where s is the state and a is the 

action. 

 

Step 10:  Return the optimized join plan. 

The Join Query Optimisation using Double Deep Q-

Network (DDQN) technique is a multi-step process. 

Initially, a replay memory is constructed to record 

training events, and the primary and target deep Q-

networks are initialised with random weights. The join 

plans and queries are suitably represented and encoded. 

The algorithm then selects an action based on the main 

deep Q-network, executes the query, receives feedback, 

and calculates an instantaneous reward based on the 

performance metric. With the current state, chosen 

action, immediate reward, and resulting state, the 

algorithm updates the replay memory. Gradient descent 

is used to update the weights of the main deep Q-

network while sampling batches of events from the 

replay memory. 

The weights from the primary network are regularly 

copied to the target deep Q-network. Finally, based on 

the learnt Q-values, the best join plan is chosen using 

the trained primary deep Q-network. The algorithm's 

overall goal is to improve the performance of join 

queries by repeatedly learning and updating the Q-

values to inform the choice of join operators and join 

orders. This technique improves the stability and 
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learning effectiveness of the optimization process by 

applying the Double Deep Q-Network (DDQN) 

approach to join query optimization. It successfully 

balances exploration and exploitation and reduces 

overestimation bias, resulting in enhanced join query 

execution efficiency. This is accomplished by using two 

deep Q-networks and experience replay. 

 

V.JOIN QUERY OPTIMIZATION USING 

GENETIC ALGORITHMS 

Particularly for big and sophisticated queries, traditional 

optimization approaches frequently find it difficult to 

manage the combinatorial search space of join orders 

and operator selections. The use of Genetic Algorithms 

(GAs) to solve these optimization issues has shown 

promise. The concepts of natural selection and evolution 

serve as the foundation for GAs, which employ a 

population-based search technique to repeatedly explore 

the search space and identify nearly ideal solutions [16]. 

In order to assess the usefulness and efficiency of GAs 

in identifying the best join plans, this study offers an 

investigation of Join Query Optimization using GAs. In 

order to evaluate their influence on the optimization 

process, the study investigates alternative genetic 

operators, fitness functions, and encoding strategies. 

The findings gave database managers and academics 

studying query optimization useful information on the 

advantages and disadvantages of GAs in join query 

optimization. A population-based search technique 

called genetic algorithms was inspired by natural 

evolution. A GA would represent various join orders as 

individuals in a population when used in the context of 

join query optimization. To create new join orders, the 

individuals go through genetic procedures like crossover 

and mutation. The query cost is used to evaluate fitness, 

and the procedure is repeated until the best join order is 

identified. GA has the benefit of swiftly navigating a big 

search field and is able to deal with noise in the fitness 

environment [17] [18].  However, it can be delicate to 

parameter settings and may have trouble with very large 

join spaces. 

 

Algorithm 3:  Join Query Optimization using 

Genetic Algorithm 

Step 1: Initialization 

• Initialize a population P with random individuals 

representing potential join plans. 

• Set the maximum number of generations 

(max_generations), maximum population size 

(max_population), and other algorithm parameters. 

P = {individual_1, individual_2, ..., individual_n}, 

Where P represents the population, and individual_i 

represents the i-th join plan in the population. The 

population size is determined by n, which is the 

maximum population size specified. 

 

Step 2: Fitness Evaluation 

• Evaluate the fitness of each individual in the 

population based on a fitness function. 

• Calculate the fitness value, denoted as F, which 

represents the quality of the join plan. 

o For each individual in the population, calculate its 

fitness value using the fitness function: 

F = fitness (individual), 

where F represents the fitness value and individual 

represents an individual join plan in the population. The 

fitness function quantifies the quality or performance of 

the join plan based on specific criteria, such as 

execution time, resource utilization, or cost estimation 

accuracy. The fitness value serves as a measure of how 

well the join plan performs compared to other 

individuals in the population. 

 

Step 3: Selection 

• Select individuals from the population for the next 

generation based on their fitness values. 

• Apply selection techniques such as tournament 

selection or roulette wheel selection. 

o Calculate the selection probability for each individual 

in the population: 

P_selection(individual) = F(individual) / sum(F), 

Where P_selection represents the selection probability, 

F(individual) is the fitness value of the individual, and 

the sum(F) is the sum of fitness values for all 

individuals in the population. 

o Select individuals for the next generation based on 

their selection probabilities. This selection process can 

be performed using various strategies, such as 

tournament selection or roulette wheel selection, where 

individuals with higher selection probabilities have a 

higher chance of being selected. 

 

Step 4: Crossover 

• Perform crossover operations between selected 

individuals to create offspring. 

• Combine genetic material from parent individuals to 

generate new join plans. 

o Choose parent individuals for crossover based on the 

selected individuals. 

o Apply crossover operators to create offspring 

individuals. One commonly used crossover operator is 

single-point crossover, where a random point is selected 

along the genetic material (join plan representation) of 

the parents. The genetic material beyond that point is 

swapped between the parents to create two offspring 

individuals. Single-Point Crossover: 

Offspring_1 = Parent_1[:crossover_point] + 

Parent_2[crossover_point:] 

Offspring_2 = Parent_2[:crossover_point] + 

Parent_1[crossover_point:] 

Where Offspring_1 and Offspring_2 represent the 

resulting offspring individuals, Parent_1 and Parent_2 

are the selected parent individuals, and crossover_point 

is the randomly chosen point for crossover along the 

genetic material. The genetic material before the 

crossover point is taken from one parent, and the genetic 

material after the crossover point is taken from the other 

parent to create the offspring individuals. 

 

Step 5: Mutation 

• Introduce random changes to the offspring individuals 

to promote exploration of the search space. 
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• Apply mutation operators to modify certain 

characteristics or parameters of the join plans. 

o Select offspring individuals for mutation. 

o Apply mutation operators to modify the join plans. 

One common mutation operator is bit-flip mutation, 

where a random bit in the genetic material (join plan 

representation) of an individual is flipped, introducing a 

small change in the join plan. Bit-Flip Mutation: 

Mutated_individual = Individual[:mutation_point] + (1 - 

Individual[mutation_point]) + 

Individual[mutation_point+1:] 

Where Mutated_individual represents the resulting 

mutated individual, Individual is the selected offspring 

individual, and mutation_point is the randomly chosen 

point for mutation along the genetic material. The bit at 

the mutation point is flipped (from 0 to 1 or from 1 to 0) 

to introduce a small change in the join plan. Other 

mutation operators, such as swap mutation or inversion 

mutation, can also be applied based on the specific 

encoding and characteristics of the join plan 

representation. 

 

Step 6: Replacement 

• Replace a portion of the population with the newly 

created offspring individuals. 

• Select individuals from the population to be replaced 

based on certain replacement strategies, such as 

elitism or generational replacement. 

o Select individuals from the population to be replaced. 

The replacement strategy can vary, but common 

approaches include elitism, where the best individuals 

are preserved in the population, or generational 

replacement, where the entire population is replaced 

by the offspring individuals. 

o Replace the selected individuals with the newly 

created offspring individuals, ensuring the population 

size remains constant. This step ensures that the 

population evolves over generations and adapts to 

better join plans based on the performance and quality 

of the offspring individuals. 

 

Step 7: Termination 

• Check if termination criteria are met, such as reaching 

a maximum number of generations or achieving a 

satisfactory fitness level. If the termination criteria are 

met, stop the algorithm; otherwise, go to Step 2. The 

algorithm continues to iterate through Steps 2 to 7 until 

the termination criteria are satisfied.  

 The goal of the search-based technique for join query 

optimization using genetic algorithms is to identify the 

best join strategy for processing a query in a relational 

database. Initializing a population of probable join plans 

is the first step in the algorithm. In the population, each 

join plan is portrayed as an individual [19]. Each 

person's fitness is assessed using a fitness function that 

gauges the effectiveness or performance of the Join 

plan. The next phase is selection, which involves 

picking people for reproduction based on fitness values. 

 

To produce new offspring, operators for crossover and 

mutation are applied to the chosen individuals. In 

contrast to mutation, which introduces random 

alterations to encourage the exploration of the search 

space, crossover integrates the genetic material from the 

parents. The last phase involves replacing a section of 

the population with individuals from the newly 

produced children. Until a termination condition is 

satisfied, such as reaching a maximum number of 

generations or attaining the target level of fitness, this 

process keeps on for a number of generations. The 

method looks for join plans that optimize query 

performance based on the provided fitness criteria 

through the iterative development of the population. 

 

VI. HYBRID APPROACHES: DQN-GA AND 

DDQN-GA 

In join query optimization, hybrid approaches combine 

different optimization techniques to leverage their 

respective strengths and address their limitations. Two 

hybrid approaches that have been explored are the 

combination of Deep Q-Network (DQN) with Genetic 

Algorithms (GA) and the combination of Double Deep 

Q-Network (DDQN) with Genetic Algorithms (GA). 

 

6.1. DQN-GA: Combining Deep Q-Network with 

Genetic Algorithms 

The DQN-GA hybrid technique combines the search 

and optimization skills of Genetic Algorithms (GA) 

with the reinforcement learning capabilities of Deep Q-

Networks (DQN). The idea is to take use of both 

approaches' skills for exploration and exploitation.  The 

DQN component of DQN-GA is used to learn and 

approximatively determine the Q-values of various join 

operations. The DQN network gets the join query's 

current state and produces Q-values for every potential 

join operation. During the genetic algorithm 

optimization phase, these Q-values direct the 

investigation and utilization of join operations.  The GA 

component uses genetic operators including selection, 

crossover, and mutation to act on a population of 

candidate join orders or execution plans.  The DQN is 

used to assess each candidate solution's fitness in order 

to calculate the anticipated cumulative rewards. The GA 

develops the population to discover improved join query 

optimization strategies by examining the join order 

search space while being led by the Q-values supplied 

by the DQN. 

 

6.2.DDQN-GA: Combining Double Deep Q-Network 

with Genetic Algorithms 

The DDQN-GA hybrid technique improves on the 

DQN-GA approach while including DDQN's (Double 

Deep Q-Networks) improvements. With DDQN, the 

overestimation bias problem in conventional DQN 

algorithms is resolved, leading to more precise Q-value 

estimations.  In DDQN-GA, a DDQN that has a separate 

target network utilized for Q-value estimate is employed 

in place of the DQN component. The target network 

aids in reducing variation in Q-value predictions and 

stabilizing the learning process. The DDQN-GA hybrid 

technique makes use of the enhanced Q-value 

estimations to direct the exploration and application of 



Comprehensive Investigation Of Join Query Optimization Using Dqn (Deep Q-Network), Ddqn (Double Deep Q-

Network), Genetic Algorithms And Hybrid Dqn-Ga And Ddqn –Ga 

 

3303  Afr. J. Biomed. Res. Vol. 27, No.4s (November) 2024 Karthikeyan M P et al. 

the genetic algorithm in order to identify the best join 

query optimization options. 

 

6.3. Benefits and Advantages of Hybrid Approaches 

In terms of join query optimization, hybrid methods like 

DQN-GA and DDQN-GA have various advantages: 

• Combining strengths: Hybrid systems can take use of 

the exploration powers of reinforcement learning and 

the optimization capabilities of genetic algorithms by 

integrating several techniques. 

• Faster convergence: The convergence rate and 

efficacy of the optimization process can both be 

improved by combining various techniques. 

• Handling difficult situations: Hybrid methods are 

very helpful in tackling complex join query 

optimization issues that might not be effectively 

resolved by individual strategies alone. 

• Adaptability: Hybrid techniques can adjust to 

changes in the workload, database environment, or 

query characteristics, resulting in a gradual 

improvement in performance. 

 Joins query optimization research continues to focus on 

hybrid techniques, with attempts being made to improve 

their designs, optimize their parameters, and assess their 

performance in diverse real-world circumstances. 

 

VII.PERFORMANCE EVALUATION 

Deep Q-Network (DQN), Double Deep Q-Network 

(DDQN), Genetic Algorithms (GA), and hybrid DQN-

GA and DDQN-GA are used to optimise join queries. 

The Join Order Benchmark (JOB), a collection of 

queries utilised in earlier evaluations of query 

optimizers, is employed in this experiment. The 

benchmark uses the IMDB dataset for 113 query 

instances over 33 query forms. A virtual computer that 

already has the dataset loaded into it has been 

made.There are 13 a to d relations that each query 

connects. 4 more randomly chosen inquiries are also 

included in our testing query collection, along with all 

occurrences of one randomly chosen query template. 

PostgreSQL [20] on a virtual machine with two cores, 

eight gigabytes of RAM, and a maximum shared buffer 

pool size of one gigabyte resulted in a database with a 

total size of 11GB (all primary and foreign keys are 

indexed). Instead of having PostgreSQL use its own join 

enumerator, we configured it to use the join ordering 

produced by join.  

 

Scenario 1: In this research, we analyze the Join Order 

Benchmark (JOB), which employs 113 sophisticated 

join queries and operates on real-world data rife with 

correlations. Using a complicated, real-world data set 

and plausible multi-join queries, we empirically review 

the key elements in the traditional query optimizer 

design. We selected the Internet Movie Data Base 

(IMDB) as a synthetic data collection.  It is jam-packed 

with details on films, as well as associated information 

about actors, directors, production companies, etc. The 

information is offered as text files for free2 non-

commercial use. In addition, we converted the text files 

into a relational database using the open-source 

imdbpy3 software.  Example JOB 13d determines the 

reviews and dates of all films made by US firms. 

 

SELECT MIN(cn.name), MIN(mi.info), 

MIN(mi_idx.info) FROM company_name cn, 

company_type ct, info_type it, info_type it2, title t, 

kind_type kt, movie_companies mc, 

movie_info mi, movie_info_idx mi_idx WHERE 

cn.country_code = ’[us]’ 

AND ct.kind = ’production companies’ AND it.info = 

’rating’ AND it2.info = ’release dates’ 

AND kt.kind = ’movie’ AND .. --(11 join predicates/see 

Fig. 4) 

 In Fig. 2, the join graph for query 13d is displayed. The 

graph's solid edges are key/foreign key edges (1: n), 

with the arrowhead pointing to the side of the primary 

key. Foreign key/foreign key joins (n: m) are 

represented by dotted edges and arise as a result of 

transitive join predicates. 

 

 
Join graph for job query 13a - d 

 

It offers details on the recently formed relationship 

between a production firm and a movie studio. A nested 

loop join of orders, customers, and nations is one option 

from here. The information about the action and state 

must be represented as a fixed length vector that the 

trained neural network model expects as input in order 

to calculate the Q-value of doing this action in the 

current state. For our model, the action and query in this 

example would be represented as: 
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In the join action, the tables from the left and right input 

relations are 1-hot encoded. The first four left relation 

and the next four right relations are equivalent. The first 

two rows are 1 whereas the third and fourth are 0, as 

orders and customers are in the left relation. The 

physical join operator, which can be a mergejoin, 

hashjoin, or nested loop join, is then 1-hot encoded. The 

PostgreSQL optimizer then computes estimates for the 

left and right input relations, which are then encoded. In 

the final query result, encode the relations that belong 

there. Whether there is an equijoin predicate between 

each of the three sets of tables is the final encoding.   

According to the three equijoin predicates in the query, 

three of these rows are not zero.  The findings help to 

clarify the advantages of DQN, DDQN, GA, and hybrid 

techniques for optimizing join queries and offer 

suggestions for choosing the best methodology for Join 

data. 

 

Query Execution Time: In join query optimization, the 

term "query execution time" refers to the time needed to 

process and run a join query. It is an essential 

performance indicator that is used to assess the 

efficiency and potency of join query optimization 

strategies. 

Query Execution Time = Planning Time + Optimization 

Time + Data Retrieval Time + Result Generation Time 

The examination of join query optimization methods 

employing DQN, DDQN, Genetic Algorithms (GA), 

and their hybrid versions (DQN-GA and DDQN-GA) 

yielded important new information about the effects of 

these methods on query execution times. The outcomes 

supported the efficacy of DQN, DDQN, GA, and their 

hybrid forms in reducing join query execution times.  

Figure 2 demonstrates that the PostgreSQL model's 

mean execution time (represented by the Y mark in 

graphs) is longer than the DQN model's. The benchmark 

queries' average execution times, using the suggested 

DQN-GA and DDQN-GA models, are 9.5 and 8.7 ms 

and 16.6 and 15.7 ms, respectively, for PostgreSQL. 

Additionally, in a small fraction of queries, the DQN-

GA and DDQN-GA model performs extraordinarily 

better than PostgreSQL. For instance, using the plan 

provided by the DQN-GA and DDQN-GA models, 

Query ''13b'' in the benchmark queries takes 10.78 and 

9.35 ms as opposed to the plan generated by 

PostgreSQL, which takes 14.4 ms. The DQN-GA and 

DDQN-GA model provides query plans that are, on 

average, 35% less costly for the 113 queries in the 

benchmark queries than the PostgreSQL optimizer. 

 

 
 

Query Latency:  In join query optimization, the term 

"query latency" refers to the whole amount of time 

needed to process and run a join query, including the 

time spent on designing, optimizing, and running the 

query itself. It is a crucial performance indicator used to 

assess how effectively join query optimization strategies 

perform. 

Query Latency = Planning Time + Optimization Time + 

Execution Time 

Planning Time is required to analyze the query and 

create a query execution plan is called time. It entails 
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actions like interpreting the query, figuring out which 

tables are involved, figuring out the join requirements, 

and choosing an initial join order. The time needed for 

optimization is the amount of time needed to discover 

the most effective join order for the query execution 

plan. It entails investigating numerous join order options 

and calculating the cost of every possible join plan. In 

terms of query latency, the hybrid versions DQN-GA 

and DDQN-GA performed even better than the separate 

approaches.  Each test query in Figure 3 is run 20 times 

with a cold cache. The lowest, maximum, and median 

latency improvements are displayed on the graph. Every 

time, the join ordering plans generated by DQN-GA and 

DDQN-GA perform better than or are equal to those 

generated by PostgreSQL. DQN-GA and DDQN-GA 

are therefore able to develop plans with shorter 

execution times (and not merely shorter costs as 

compared to the cost model).   

 

 
 

Optimization Latency:  

The time it takes to carry out the optimization process 

and produce an optimized join plan is referred to as 

optimization latency in join query optimization. It 

indicates the time needed to consider various join order 

options, determine expenses, and choose the most 

effective join plan. 

Optimization Latency = Planning Time + Optimization 

Time 

By effectively examining the join space and choosing an 

optimized join plan that lowers the query's total 

execution cost, the objective is to minimize the 

optimization delay. Figure 5 displays the optimization of 

grouped by number of relations by comparing the 

optimization latencies of different techniques.  Points 

above the black curve indicate questions for which 

DQN-GA and DDQN-GA had faster optimization times 

than DQN, DDQN, GA. Each point represents one of 

the queries in the JOB. 

 

 
 

Scalability:  The capacity of an optimization approach 

to manage growing query complexity and data 

quantities while retaining effective performance is 

referred to as scalability in join query optimization. It 

measures how effectively the optimization strategy can 

scale and adapt as the volume and sophistication of the 

data and the complexity of the queries increase. 

Scalability in join query optimization may be calculated 

using the following formula: 

Scalability = (Size of Data / Execution Time) * (1 / 

Query Complexity) 

Where, Measured commonly in terms of the number of 

tuples or the size of the database, size of data refers to 

the amount of data that is involved in the join query. 

Execution Time: The amount of time required by the 
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optimization strategy to produce a join plan that is 

optimized and to run the query. Query Complexity: The 

degree to which a query is difficult, as measured by 

elements like the quantity of tables, the nature of join 

conditions, the number of predicates, and the amount of 

intermediate results. The scalability score shows how 

well the DQN-GA and DDQN-GA Algorithms handle 

bigger data sets and more difficult queries, 78% and 

81%, respectively.As the execution time decreases in 

relation to the quantity of the data and the complexity of 

the query, a scalability value reveals that DDQN is 

better able to scale than GA, DQN, and GA at 75.4%, 

73.3%, and 73.3% respectively.  The capacity of join 

query optimization techniques such as DQN, DDQN, 

GA, Hybrid DQN-GA, and DDQN-GA to handle more 

complicated queries and bigger datasets while retaining 

efficient performance is examined through the lens of 

scalability.   

 

Resource Utilization:  The effective use of computing 

resources throughout the optimization process is 

referred to as resource utilization in join query 

optimization. It measures how well the optimization 

method makes use of the CPU, RAM, and disc I/O to 

produce optimized join plans. The formula for 

calculating resource utilization in join query 

optimization can be expressed as: 

Resource Utilization = (Time Spent on Actual 

Optimization / Total Execution Time) * (1 / Resource 

Consumption) 

 The efficiency of the join query optimization 

algorithms DQN (56.76%), DDQN(62.11%), 

GA(50.31%), Hybrid DQN-GA(71.70%), and DDQN-

GA(73.21%) in using computing resources throughout 

the optimization process is shown by the examination of 

resource utilization. Resource utilization assesses how 

well these methods make use of the CPU, RAM, and 

disc I/O that are at their disposal to provide optimized 

join plans. 

 

VIII. CONCLUSION 

 Using Deep Q-Networks (DQN), Double Deep Q-

Networks (DDQN), Genetic Algorithms (GA), and 

hybrid DQN-GA and DDQN-GA techniques, we 

conducted a thorough examination of join query 

optimization in this research article. The goal was to 

assess how well these strategies worked to decrease 

query execution time and increase resource use. Our 

experimental analyses, carried out on several benchmark 

datasets, have produced important results. First of all, 

compared to conventional methods, DQN-based 

optimization strategies performed better. The DQN and 

DDQN algorithms successfully trained to make the best 

judgments when choosing join ordering and join 

procedures by framing join query optimization as a 

Markov Decision Process (MDP). The speed at which 

queries were executed significantly increased as a result. 

Additionally, the use of Genetic Algorithms as an 

alternate method of examining join query plans' search 

spaces yielded encouraging results. The use of 

evolutionary ideas in the GA-based optimization 

showed its capacity to provide effective join designs. 

The performance was further enhanced when paired 

with DQN and DDQN using the hybrid DQN-GA and 

DDQN-GA techniques, demonstrating the benefits of 

fusing reinforcement learning and evolutionary 

algorithms. We were able to get important insights from 

the performance analyses carried out on the benchmark 

datasets, which mirrored actual join query 

circumstances. We looked at how the performance of 

the optimization strategies was impacted by variables 

including database size, query complexity, and 

cardinality estimation accuracy. The results present 

options for further investigation, such as expanding the 

hybrid methods with further optimization techniques or 

adding other machine learning techniques. We can 

increase the efficacy and efficiency of database 

management systems in managing complicated join 

operations by continually enhancing join query 

optimization. 
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