

https://africanjournalofbiomedicalresearch.com/index.php/AJBR

Afr. J. Biomed. Res. Vol. 27(4s) (November 2024); 1929-1934 Research Article

Beta-Sitosterol and Stigmasterol as Synergestic Anticancer Potential in Breast Cancer Isolated from Euphorbiaceae Family Plants

Prashali Shinde^{1*}, Gurdeep Singh¹, Deepak Kardile², Mohini Salunke³, Snehal Kashid^{1,4}

> *Corresponding Author: Prashali Shinde *School of pharmaceutical sciences, lovely professional university, Panjab, India,

> > Email: prashali.shinde@gmail.com

Abstract:

This study explores the potential anticancer properties of phytosterols like beta-sitosterol and stigmasterol isolated from *Euphorbia Pulcherrima* leaves and *Ricinus communis* seed with synergestic effect. Mechanism of Beta-sitosterol suppresses angiogenesis and metastasis and induces apoptosis and cell cycle arrest. It also inhibits cell proliferation, migration, and invasion. While Stigmasterol suppresses the NF- κ B and PI3K/Akt signalling pathways while inducing autophagy and death. Additionally both exhibit wound healing activity, antibacterial, antiulcer, anticonvulsant, antioxidant, and anti-inflammatory properties. Both phytosterols have been shown to be effective against various breast cancer cell. The *in-vitro* anticancer activity of β -sitosterol and stigmasterol, as well as their combination shows synergistic effect against the breast cancer cell lines MCF-7 (hormone receptor-positive) Inhibit cell proliferation and induce apoptosis and MDA-MB-231 (hormone receptor-negative) Suppress cell migration and invasion along with their percentage inhibition using the MTT at several concentration ranges between

 $6.12 \,\mu g/ml$ and $100 \,\mu g/ml$. At a dosage of $100 \,\mu g/ml$, its combination exhibits the maximum percent inhibition. A bliss independence model was used to examine the synergistic action of β - sitosterol and stigmasterol. Because of their low toxicity and natural origin, they are interesting to candidates for combination therapy with other anticancer agents. These findings suggest that phytosterols may be effective against multiple breast cancer subtypes, To completely comprehend their causes and treatment approaches, more investigation is required.

Keywords: β-Sitosterol, Stigmosterol, synergism, Breast cancer.

*Author for correspondence: Email: prashali.shinde@gmail.com

DOI: https://doi.org/10.53555/AJBR.v27i4S.3966

© 2024 The Author(s).

This article has been published under the terms of Creative Commons Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0), which permits noncommercial unrestricted use, distribution, and reproduction in any medium, provided that the following statement is provided. "This article has been published in the African Journal of Biomedical Research"

Introduction:

One of the main risks to human health and survival is tumor, which has a high rate of recurrence and mortality. 1 Among women, breast cancer is the second most common cause of death due to cancer. One of the most prevalent malignancies in the world is breast cancer². Over the past 20 years, research on the disease has significantly advanced our knowledge of it, leading to the development of less harmful and more effective treatments. Breast tissue tumors, usually from the lobules that provide milk to the ducts or the inner lining of the milk ducts. 3 "Early" breast cancer refers to cancer that is detected and amenable to surgical removal. On the other hand, cancer cells that go undiagnosed can grow and eventually kill a person 4 The underlying biological mechanisms are now being considered when making treatment options, which in the past were mostly centered on the anatomic extent of the disease. ⁵ Natural substances called phytosterols can be found in nuts, seeds, and vegetable oils, or they can be added to consumer food products. The incidence and prognosis of certain cancers are inversely correlated with the consumption of phytosterols.⁶ Analogs of cholesterol, phytosterols or plant sterols are present in plant cells. More than 250 different phytosterols have been found, in addition to sitosterol, stigmasterol, and campesterol.7 phytosterols suggested that they might prevent our diets from absorbing cholesterol by acting as a steric barrier. ⁸ By lowering intestinal cholesterol absorption, phytosterol ingestion lowers blood LDL cholesterol levels and lowers the risk of cardiovascular disease. The possible impacts and mechanisms of action of phytosterols on cancer types. A significant amount of phytosterols reduce the growth of stomach, ovarian, lung, and breast cancers. A variety of modes of action appear to be employed by phytosterols, including the stimulation of malignant cell death and the prevention of carcinogen formation, cancer-cell proliferation, angiogenesis, invasion, and metastasis 9 The Euphorbiaceae family is a significant one that includes a variety of therapeutic plants. 10 A phytochemical analysis of the Euphorbiaceae family revealed the presence of glycoproteins, lectins, phorbol esters, diterpenes, triterpenes, sterols, and saponins¹¹.Usually therapeutic plants with high levels of naturally occurring phytoestrogens, or chemicals that resemble estrogen. These have been demonstrated to have a variety of impacts on people, such as the prevention of malignancies 12 and the enhancement of brain function ¹³.It was proposed that eating foods high in phytoestrogens could lower the risk of contracting breast cancer ¹⁴ While the MCF-7 breast cancer cell line's in vitro proliferation is inhibited by dietary phytoestrogen ingestion ¹⁵ One recognized phytosterol with estrogen-mimicking properties is β -sitosterol ¹⁶. BS has angiogenic, antioxidant, antimicrobial, angiogenic, antioxidant, immunomodulatory, antidiabetic, anti-inflammatory, anticancer, antinociceptive properties ¹⁷. Primarily through promoting apoptosis, triggering cell cycle arrest, controlling oxidative stress, increasing metabolic reprogramming, preventing invasion and metastasis,

adjusting immunology and inflammation 18

Stigmasterol is an unsaturated phytosterol belonging to the class of tetracyclic triterpenes. It is one of the most common plant sterols, found in a variety of natural sources, including vegetable fats or oils from many plants.stigmasterol has been examined via in vitro and in vivo assays and molecular docking for its various biological activities on different metabolic disorders. The findings indicate potent pharmacological effects anti-osteoarthritis, such as anticancer, inflammatory, anti-diabetic, immunomodulatory, antiparasitic, antifungal, antibacterial, antioxidant, and neuroprotective properties ¹⁹ stigmasterol has become a unique compound due to its diverse pharmacological properties ²⁰

Nowadays, the mainstays of medical care are targeted medicines and chemotherapeutic drugs. Because tumors may be innately (denovo) resistant to the medications, patients may not always react to these treatments. Moreover, those who show initial response to treatment are prone to develop resistance over time, which could lead to treatment failure or a recurrence of the disease. Multiple chemotherapeutic drugs with unique pharmacological mechanisms are utilized in combination therapy to improve clinical results. most widely used reference models, which provide a mathematical foundation for accurately evaluating drug interactions in combination models, are used to assess synergism in drug combinations. most often used reference models, which provide a mathematical framework to accurately evaluate drug interactions in combination models and assess synergism in medication combinations. 21

These techniques evaluate a beneficial interaction effect based on the actions of each individual medicine in a combination. There are four primary tactics that are effect-based.Response additivity, highest single agent, combination subthresholding, and bliss independence model ²² Assuming that medications act on distinct sites of action, this model suggests that both pharmaceuticals used in combination drugs act independently and do not interfere with one another. However, this model makes the assumption that the observed impact is a result of both medications. When the calculation index for this method is less than, greater than, or equal to 1, respectively, it indicates synergy, antagonistic, additivity ^{21, 22}.

Material and method

The plant of *Euphorbia pulcherrima* plant and seed of *Ricinus communis* seed were collected from the Nature Garden -Akluj and plant were authenticated at the Botanical Survey of India Pune (Maharashtra). The cancer cell line MCF-7 and MDA-MB-231 was purchase from the National Centre for Cell Science (NCCS) Pune. The cells were cultured at a temperature of 37°C within a humidified atmosphere containing 5% CO₂ after confluence level achieving 80-90%, the cells were used in assays. In a Soxhlet extractor, the plant *Ricinus communis* seed powder and leaves of *Euphorbia Pulcherrima* (powder) was progressively extracted with water, ethanol, and petroleum ether.

The filtrate was collected and then evaporated under reduced pressure and dry. Extract was fractionated with the help of coloum chromatography and isolate the compound from Ether extract of E. Pulcherrima (L) leaves and *Ricinus communis* seeds by using solvent system such as Hexane: ethyl acetate in ratio 7: 3 and Pet. ether: Ethyl acetate: Acetonitrile were in 8.2:1.8:0.1 ratio and their confirmation was done by TLC and various spectral data like HPTLC,FTIR,MASS,NMR etc.

Material and Method:

MTT assay

MCF-7 and MDA-MB-231 cell lines were chosen for in vitro anticancer potential screening. The cell viability was determined using MTT assay. Cells were incubated at a concentration of 1 × 104cells/ml in culture medium for 24 h at 37°C and 5% CO2. Cells were seeded at a concentration (70µl) 104 cells/well in 100 μl culture medium and 100μl Betasitosterol and Stigmasterol and its combination compounds (6.10, 12.5, 25, 50, 100 µg/ml) into micro plates respectively (tissue culture grade, and 96 wells). Control wells were incubated with DMSO (0.2% in PBS) and cell line. All samples were incubated in triplicate. Controls were maintained to determine the control cell survival and the percentage of live cells after culture. Cell cultures were incubated for 24 h at 37°C and 5% CO2 in CO2 incubator (Thermo scientific BB150). After incubation, the medium was completely removed and Added 20 µl

of MTT reagent (5mg/min PBS). After addition of MTT, cells incubated for 4 hrs at 37 0 C in CO2 incubator. Observed the wells for formazan crystal formation under microscope. The yellowish MTT was reduced todark coloured formazan by viable cells only. After removing the medium completely. Added 200µl of DMSO (kept for 10 min) and incubate at 37^{0} C (wrapped with aluminium foil). Triplicate samples were analyzed by measuring the absorbance of each sample by a Elisa microplate reader (Benesphera E21) at a wavelength of 570 nm 23,24

Bliss independence for synergism

The Bliss independence model is widely used to analyses drug combination data when screening for drug combinations i.e, Antagonism, Additivity and Synergy ²⁵

BLISS formula

CI = EA + EB - EAEB / EAB

Where,

EAB = EA + EB (1-EA)

EA-Effect of Beta, EB-Effect of Stigma CI-Combination index

While the Synergestic effect indicated as CI<1, Antagonism as CI>1 and Additive effect as CI=1.²⁶

Result

MTT assay Percent inhibition against MCF-7

Table no. 1 Summary of MTT assay Percent inhibition against MCF-7

Concentration (µg/ml)	6.12	12.5	25	50	100
Betasitosterol (% Inhibition)	53.67	63.96	69.94	75.88	77.33
Stigmasterol (% Inhibition)	18.24	29.18	40.41	52.6	60.57
Combination (% Inhibition)	41.52	49.82	76.8	86.78	89.67

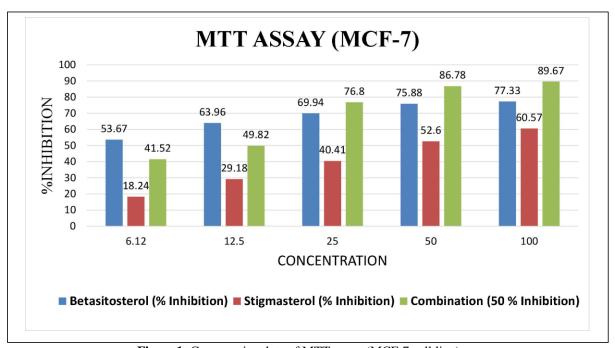


Fig.no.1 Comparative data of MTT assay (MCF-7 cell line)

Beta-Sitosterol and Stigmasterol as Synergestic Anticancer Potential in Breast Cancer Isolated from Euphorbiaceae Family Plants	

MTT assay Percent inhibition against MBA-MB-231

Table no. 2 Summary of MTT assay Percent inhibition against MBA-MB-231

Concentration (µg/ml)	6.12	12.5	25	50	100
Betasitosterol (% Inhibition)	51.59	61.66	69.7	74.99	75.82
Stigmasterol (% Inhibition)	10.93	24.58	34.91	52.15	62.21
Combination (% Inhibition)	41.14	44.5	77.15	86.51	89.07

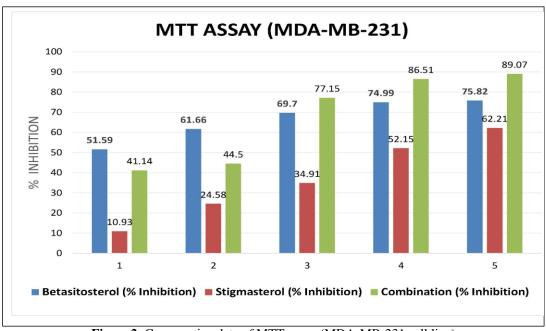


Fig.no.2 Comparative data of MTT assay (MDA-MB-231 cell line)

Bliss independence (MTT assay MCF-7)

Table no. 3 Bliss independence Expected and Observed effect (MTT assayMCF-7)

			· , , , , , , , , , , , , , , , , , , ,
Concentration	Expected effect	Observed effect	Combination
(µg/ml)			index (CI)
6.1	35.95	41.52	0.2
12.5	46.57	49.82	0.3
25	55.17	76.8	0.3
50	64.24	86.78	0.4
100	68.94	89.67	0.4

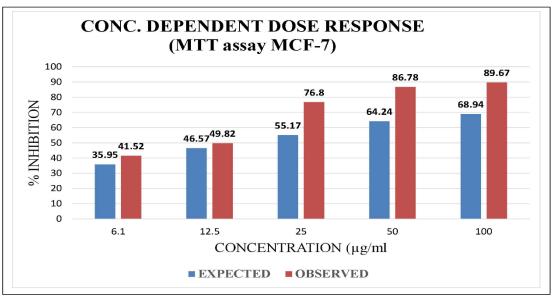


Fig.no.3 Concentration dependent dose response (MTT assay using MCF-7)

Bliss independence (MTT assay MDA-MB-231)

Concentration (µg/ml)	Expected effect	Observed effect	Combination index (CI)
6.1	36.72	41.14	0.2
12.5	43.12	44.5	0.2
25	52.3	77.15	0.3
50	63.56	86.51	0.3
100	69.01	89.07	0.4

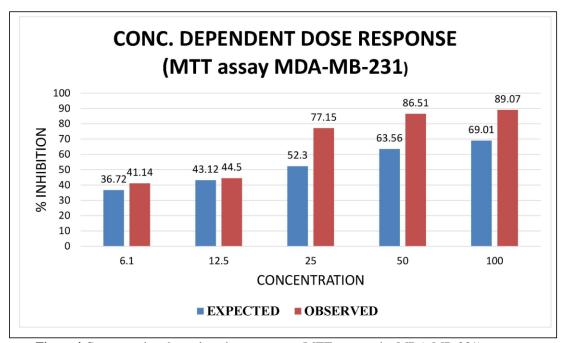


Fig.no.4 Concentration dependent dose response (MTT assay usingMDA-MB-231)

In vitro anticancer cell line studies of Besitosterol and stigmasterol were carried out using the MCF-7 and MDA-MB-231 cell lines. For estimation of % inhibition, the MTT assay method were implemented. During the investigation of the MTT assay for the MCF-7 cell line, stigmasterol and their combination in a 1:1 ratio were screened between concentrations of 6.12 μg/ml to 100 μg/ml. Betasitosterol at 100 μg/ml shows 77.33% inhibition, stigmasterol at 100 µg/ml shows 60.57% inhibition, while a combination of both drugs at 100 µg/ml shows 89.67% inhibition. On the other hand, the MTT assay for the MDA-MB-231 cell line Betasitosterol at 100 µg/ml shows 75.82 % inhibition, while at 100 µg/ml shows 62.21% inhibition, while a combination of both drugs at 100 μg/ml shows 89.07% inhibition.

Conclusion

βesitosterol, stigmasterol, and its combination in a 1:1 ratio for its in vitro breast cancer potential was carried out using the MCF-7 and MDA-MB-231 cell lines. Findings suggested that at 100 μ g/ml it shows the highest percent inhibition. This screening is done by MTT assay. Moreover, synergism between β-sitosterol, and stigmasterol was investigated using the dose-dependent Bliss independence model, and the finding concludes that β-sitosterol, and stigmasterol in

combination 1:1 ratio show remarkable anti-cancer potential.

Acknowledgement

The authors acknowledge College of Pharmacy, Akluj for providing laboratory facilities and support.

Conflict of interest – There is no conflict of interest declared by authors

References:

- Dwivedi J, Sachan P, Wal P. A Mechanistic Approach on Structural, Analytical and Pharmacological Potential of Beta-sitosterol: A Promising Nutraceutical. Current Nutrition & Food Science. 8(2024)932-51.
- 2. Sun YS, Zhao Z, Yang ZN, Xu F, Lu HJ, Zhu ZY, Shi W, Jiang J, Yao PP, Zhu HP.Risk factors and preventions of breast cancer. International journal of biological sciences. 11(2017) 1387.
- 3. Sharma GN, Dave R, Sanadya J, Sharma P, Sharma K. Various types and management of breast cancer: an overview. Journal of advanced pharmaceutical technology & research 1;12(2010)109-26.
- 4. Early Breast Cancer Trialists' Collaborative GR, Clarke MJ, Cochrane Breast Cancer Group. Tamoxifen for early breast cancer. Cochrane

- Database of Systematic (1996). Reviews. 3
- 5. Libson S, Lippman M. A review of clinical aspects of breast cancer. International review of psychiatry. Feb 1;26,19(2014)4-15.
- 6. Cioccoloni G, Soteriou C, Websdale A, Wallis L, Zulyniak MA, Thorne JL. Phytosterols and phytostanols and the hallmarks of cancer in model organisms: A systematic review and meta-analysis. Critical reviews in food science and nutrition.62,9(2022)51145-65.
- 7. Han B, Jiang P, Jiang L, Li X, Ye X. Three phytosterols from sweet potato inhibit MCF7-xenograft-tumor growth through modulating gut microbiota homeostasis and SCFAs secretion. Food Research International. (2021)141:110147.
- 8. Bouic PJ. The role of phytosterols and phytosterolins in immune modulation: a review of the past 10 years. Current Opinion in Clinical Nutrition & Metabolic Care.469(2001)471-5.
- 9. Woyengo TA, Ramprasath VR, Jones PJ. Anticancer effects of phytosterols. Europea journal of clinical nutrition. 7(2009)813-20.
- 10. Islam MS, Ara H, Ahmad KI, Uddin MM. A review on medicinal uses of different plants of Euphorbiaceae family. Universal journal of pharmaceutical research. (2019)
- 11. Radi MH, El-Shiekh RA, El-Halawany AM, Al-Abd AM, Abdel-Sattar E. In vitro cytotoxic study of Euphorbia grantii Oliv. aerial parts against MCF-7 and MCF-7ADR breast cancer cell lines: A bioactivity-guided isolation. ACS omega. 8(2023) 299-305.
- 12. Chai JW, Kuppusamy UR, Kanthimathi MS. Betasitosterol induces apoptosis in MCF- 7 cells. Malaysian Journal of Biochemistry and Molecular Biology. 16,2(2008)28-30.
- 13. Luine V, Attalla S, Mohan G, Costa A, Frankfurt M. Dietary phytoestrogens enhances spatial memory and spine density in the hippocampus and prefrontal cortex of ovariectomized rats. Brain Res 1126(2006)183-187.
- Ganry O. Phytoestrogens and breast cancer prevention. Eur J Cancer Prevention 11(2002)519-522.
- 15. Pagliacci MC, Smacchia M, Migliorati G, Grignani F,Riccardi C, Nicoletti I Growth- inhibitory effects of the natural phyto-oestrogen genistein in MCF-7 human breastcancer cells. Eur J Cancer 309(1994) 1675-1682.
- 16. MacLatchy DL, Van Der Kraak GJ. The phytoestrogen beta-sitosterol alters the reproductive endocrine status of goldfish. Toxicol Appl Pharmacol 134(2)(1995)305-512.
- 17. Rashed K. Beta-sitosterol medicinal properties: A review article. J. Sci. Innov. Technol. 9,(2020)208-12.
- 18. Wang H, Wang Z, Zhang Z, Liu J, Hong L. β-Sitosterol as a promising anticancer agent for chemoprevention and chemotherapy: mechanisms of action and future prospects. Advances in Nutrition. 5.(2023)1085-110.
- 19. Bakrim S, Benkhaira N, Bourais I, Benali T, Lee

- LH, El Omari N, Sheikh RA, Goh KW, Ming LC, Bouyahya A. Health benefits and pharmacological properties of stigmasterol. Antioxidants.11(10).(2022) 1912.
- 20. Ashraf, R.; Bhatti, H.N. Stigmasterol. In A Centum of Valuable Plant Bioactives; Elsevier: Lahore, Pakistan (2021) 213–232.
- 21. Bellat, V., Verchère, A., Ashe, S.A. et al. Transcriptomic insight into salinomycin mechanisms in breast cancer cell lines: synergistic effects with dasatinib and induction of estrogen receptor β. BMC Cancer 20, (2020) 661. https://doi.org/10.1186/s12885-020-07134-3
- 22. Foucquier, J., Guedj, M., Analysis of drug combinations: current methodological landscape. Pharmacol. Res. Perspect. 3. (2015).
- 23. V. J. Sawant, S. R. Bamane, R. V. Shejwal, S. B. Patil, Comparison of drug delivery potentials of surface functionalized cobalt and zinc ferrite nanohybrids for curcumin in toMCF-7 breast cancer cells. Journal of Magnetism and Magnetic Materials 417 (2016) 222-229.
- 24. Hemanth Kumar Manikyam, Sunil K Joshi, Spandana Vakadi, Sandeep Balvant PatilAnticancer activity of novel terpenoid saponin of psidium guajava on MCF-7 cancer cell line using DAPI and MTT assays, African Journal of Pharmacy and Pharmacology 15 (2021) 206-211
- 25. Diana Duarte, Nuno Vale, Evaluation of synergism in drug combinations and reference models for future orientations in oncology, Current Research in Pharmacology and Drug Discovery, (2022) 100110, ISSN 2590 2571, https://doi.org/10.1016/j.crphar.2022.100110.
- 26. Sadeghi-aliabadi, H., Minaiyan, M., Dabestan, A., Cytotoxic evaluation of doxorubicin in combination with simvastatin against human cancer cells. Research in Pharmaceutical Sciences. 2, 9(2010) 127-133.