

“Formulation and Evaluation of Solid Lipid Nanoparticles by Using High-Pressure Homogenization Technique for the Treatment of Cancer”

Vinod D. Usnale^{1*}, Gaurav Jain², Jyotiram A Sawale³, Rohit D. Usnale⁴, Rashmi Shrivastava⁵

^{1,2,4}IES Institute of Pharmacy, IES University, Bhopal-462044, Madhya Pradesh, India

³Department of Pharmacognosy, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth, Karad, (M.S.)

⁵Department of Chemistry, IES College of Technology, IES University, Bhopal- 462044, (M.P.)

***Corresponding author:** Vinod D. Usnale

***IES Institute of Pharmacy, IES University, Bhopal-462044, Madhya Pradesh, India Mail ID-
vinod.usnale@rediffmail.com**

1. Abstract:

In this study, Solid lipid Nanoparticles were produced using a high pressure homogenization method and the resulting drug samples were examined during preformulation studies. A high-pressure homogenization procedure was used to produce (SLN) Solid lipid Nanoparticles containing Docetaxel API. The produced Nanoparticles were examined for numerous characteristics, including zeta potential, particle size, percentage entrapment efficiency, Polydispersity index, and scanning electron microscopy examinations.

The present study describes Docetaxel-loaded solid lipid Nanoparticles including a variety of lipids and surfactants. The Nanoparticles were manufactured in the form of dry powder for injection purposes. Formulated Nanoparticles were characterized for appearance, PH, drug content, and consistency index and the results of the above studies revealed that formulated Nanoparticles were found to be stable and can be used to treat cancer patients, owing to the formulation of SLN loaded with Docetaxel demonstrating better drug release at targeted sites to treat cancer cells.

Keywords: Nanoparticles, Docetaxel, SLN, Homogenization, and cancer cells.

***Author for correspondence: Email:** vinod.usnale@rediffmail.com

Received: 3 October, 2024 Accepted: 9 October, 2024

DOI: <https://doi.org/10.53555/AJBR.v27i3S.2476>

© 2024 The Author(s).

This article has been published under the terms of Creative Commons Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0), which permits noncommercial unrestricted use, distribution, and reproduction in any medium, provided that the following statement is provided. “This article has been published in the African Journal of Biomedical Research”

2. Introduction:

For the past 20 years, the development of nanotechnology has had a significant impact on clinical therapies. For the administration of a variety of medications, nanoscale drug carriers including polymeric Nanoparticles have been shown to be safer and more effective. Longer circulation half-lives, less adverse effects, less frequent dosage, and patient

compliance are benefits of Nanoparticles drug delivery, particularly at the systemic level. For greater accumulation at tumour locations during cancer therapy, Nanoparticles can also depend on the higher permeability and retention effect brought on by leaky vasculature. Due to these benefits, therapeutic Nanoparticles are a possible alternative to

conventional chemotherapy, which involves the intravenous delivery of harmful drugs, which seriously endangers healthy tissue and has dose-limiting negative effects.

The most frequent cancer in women, breast cancer accounts for roughly one-third of all cancers in females. It is the top cause of death for American women between the ages of 40 and 55 and is second only to lung cancer in terms of cancer mortality.

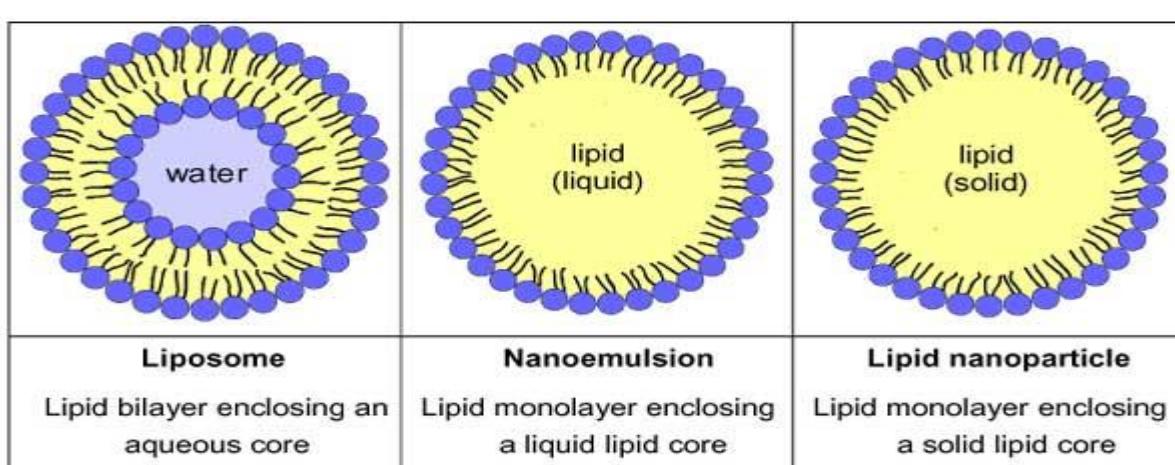
A woman has a 12.6% lifetime risk of acquiring invasive breast cancer¹.

A clinically proven anti-mitotic chemotherapy drug is **Docetaxel** (i.e., it interferes with cell division). It is mostly used to treat non-small cell lung cancer, breast cancer, ovarian cancer, and prostate cancer. Docetaxel is a class II medication under the Biopharmaceutical Classification System (BCS). Only solution, powder for solution, and solution for infusion are available for intravenously (IV) administration. 20 mg/0.5 ml of solution is the typical dosage. It is soluble in ethanol and dimethyl sulfoxide but insoluble in water.

Drug targeting is a unique method of drug delivery in which the pharmacological agent is targeted specifically to the organ or cell where it will have the greatest impact. Drug that is encapsulated in Nanoparticles is delivered to the area that needs it, protecting other tissues from potential injury. As a result, it results in a decrease in side effects and negative responses.

The majority of chemotherapeutic anticancer drugs are dispersed throughout the body and do not target tumour cells specifically. The therapeutic index of conventional chemotherapy drugs is poor. Solid tumours are challenging to treat with chemotherapy for this reason. To increase tumour targeting, polymeric carriers containing therapeutic molecules conjugated or entrapped are utilised. These polymeric Nanoparticles

alter pharmacokinetic properties at drug and cellular level².


High proportions of proliferating cells, a lack of pericytes, abnormal basement development, and enhanced tortuosity are all characteristics of tumour blood arteries. So, tumor blood vessels vascularise rapidly which require more oxygen and nutrients. This causes a reduction in lymphatic outflow and an increase in macromolecule permeability. The inability to efficiently remove persistent macromolecules from the tumour cell due to inadequate lymphatic outflow causes them to be maintained. The "enhanced permeability and retention (EPR) effect" is the name of this passive targeting mechanism³.

Optimum size for Nanoparticles for the effectiveness to tumor is not decided precisely but based on study of liposomes and Nanoparticles, the cut-off size of pore in tumor vessel ranges between 200-1.2 μm ⁴⁻⁵ and direct observation demonstrated a tumor dependant pore cut-off size ranges from 200 nm -2 μm ⁶⁻⁷.

Nanoparticles are solid colloidal particles ranging from 10 to 1000 nm (1.0 μm), in which the active drug or biologically active material are dissolved, entrapped, and/or to which the active principle is adsorbed or attached.

As, nanotechnology may be defined:

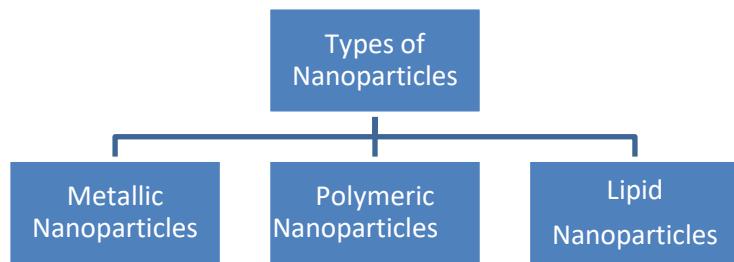

- Nanotechnology is the preparation of nanosized structures containing the API as shown in fig: 1.
- Nanotechnology, as defined by the National Nanotechnology Initiative (NNI), is the study and use of structures roughly in the size range of 1 to 100 nm.
- Goal of nanotechnology is same as that of medicine: to diagnose as accurately and early as possible and to treat as effectively as possible without any side effects using controlled and targeted drug delivery approach

Fig.1: Nanosized Structures.

Nanocarrier platforms are beneficial as their large surface-area-to-volume ratio permits functionalization with payloads of targeting ligands providing tissue-

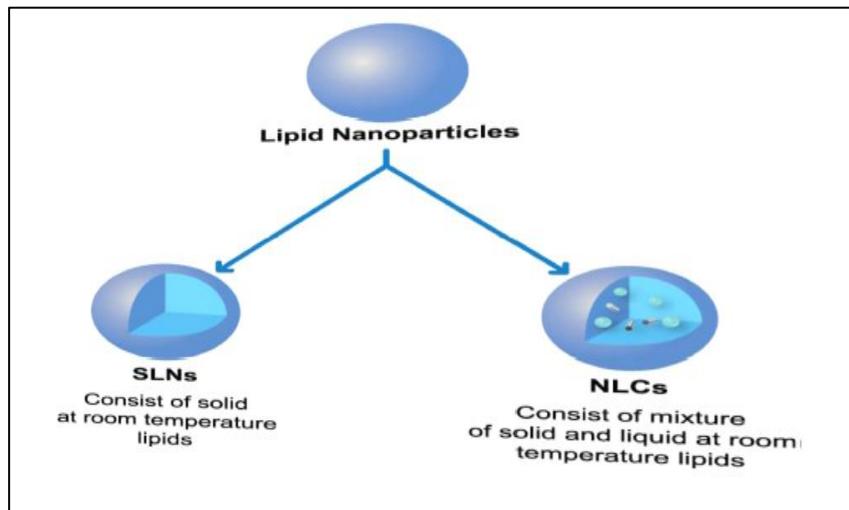

specific delivery, labels for tracking or disease diagnosis, and drugs for therapy.

Fig.2: Classification of Nanoparticles.

Nanoparticulate drug carriers investigated for many years include oil-in-water (O/W) emulsions, liposomes, microparticles and Nanoparticles based on synthetic polymers or natural macromolecules the major concern

of metallic and polymeric Nanoparticles is toxic effect of metal and polymer used in preparation. Lipid Nanoparticles are classified as two types,

Fig.3: lipid Nanoparticles.

Lipid-based drug delivery systems may contain a broad range of oils, surfactants, and co-solvents. They represent one of the most popular approaches to overcome the absorption barriers and to improve the bioavailability of poorly water-soluble drugs

The use of solid lipids instead of liquid oils is a very attractive idea to achieve controlled drug release, because drug mobility in a solid lipid should be considerably lower compared with liquid oil. As the lipids used in the preparation are categorized as GRAS (Generally Recognized as Safe) substances.

3. Material and Method:

3.A. Drug and Excipients:

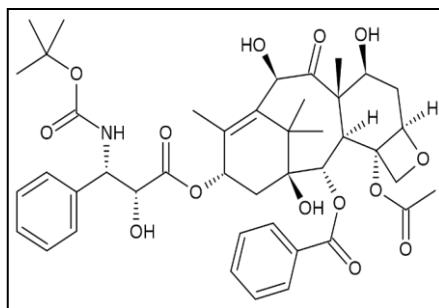
Sr.No.	Drug / Excipients	Supplier
1	Docetaxel	Manbro Pharma Pvt.Ltd.
2	Tween 80	Manbro Pharma Pvt.Ltd.
3	Poloxamer 188	Manbro Pharma Pvt.Ltd.
4	Glycerol monostearate	Manbro Pharma Pvt.Ltd.
5	Glyceryl monooleate	Manbro Pharma Pvt.Ltd.

Table1. Drug and Excipients used

3.B. Equipment's:

Sr.No.	Equipment's	Make /company
1	Weighing balance	AUX120, Shimadzu, Japan
2	Mechanical stirrer	Remi Laboratory, Mumbai
3	U V Spectrophotometer	Shimadzu UV-1800, Japan
4	Sonicator	PCI analyticals, Model-100HPOTC, India

5	Dissolution test apparatus	Electrolab Dissolution tester USP TDT- 08L, India
6	Hot air oven	Bio-Techniques, India
7	pH meter	Labtronics, Model:LT-10, Delhi
8	Magnetic stirrer	Remi Laboratory, Mumbai
9	Diffusion cell	Orchid Scientific, Nasik


Table 2. Equipments used

3.1 Drug Profile:

3.1.1 Docetaxel:

Docetaxel is a taxoid antineoplastic drug used to treat several malignancies, including head and neck cancer, metastatic prostate cancer, locally advanced or metastatic breast cancer, and gastric adenocarcinoma.

3.1.2 Background: Docetaxel is a chemotherapy medication with anti-mitotic activity that has been clinically shown to be effective in treating non-small cell lung, breast, and ovarian cancers. A 1:1 stoichiometric ratio of high affinity Docetaxel to tubulin allows for reversible attachment.

Fig. 4: Structure of Docetaxel

3.1.3 Weight: Monoisotopic-807.346605409 Average-807.8792

3.1.4 Chemical Formula: C₄₃ H₅₃ NO₁₄

3.1.5 Indication: The failure of earlier chemotherapy, for the treatment of patients with locally advanced or metastatic breast cancer. Following the failure of earlier platinum-based chemotherapy, it is also utilized as a single agent in the treatment of patients with locally advanced or metastatic non-small cell lung cancer. Additionally, it is used in conjunction with prednisone to treat individuals with metastatic prostate cancer that is androgen independent (hormone refractory). Docetaxel is also used to treat head and neck cancer as well as stomach adenocarcinoma.

3.1.6 Half-life: Dose-dependent. A dose of 70 mg per square meter of body surface area (mg/m²) or more results in a triphasic elimination profile. It was impossible to determine the terminal elimination phase at lower dosages due to assay limitations. The half-lives of the alpha, beta, and gamma phases are 4 minutes, 36 minutes, and 11.1 hours, respectively.

3.1.7 Clearance: After receiving 20–115 mg/m² through IV, cancer patients' total body clearance was 21 L/h/m².

4.4 Calibration curve of Docetaxel :^[97]

2, 4, 6, 8, and 10 ml of the standard stock solution were taken out, and ethanol was used to dilute them to a volume of 10 ml with a concentration of 2, 4, 6, 8, and

4.Preformulation Study:

4.1 Identification of drug:

Identification of Docetaxel was carried out by melting point determination, Infrared spectroscopy and UV spectroscopy.

4.2 Melting point determination:^[96]

A little amount of the drug was placed in a capillary tube that was closed at one end to measure the drug's melting point. The capillary tube was put into a melting point device, and the temperature at which the medication melted was recorded. This operation was done three times, and the average value was documented.

4.3Determination of λ_{max} and plotting of calibration curve of Docetaxel:^[97]

Accurately weighed 10 mg of Docetaxel was dissolved in 10 ml of methanol and volume made up to 100 ml by methanol to make concentration of 100 $\mu\text{g}/\text{ml}$. From this solution 1 ml was withdrawn and the volume was made up to 10 ml with methanol to prepare stock solution.

The solution containing concentration of 10 $\mu\text{g}/\text{ml}$ Docetaxel was scanned over the wavelength of 200–400 nm in UV spectrophotometer to determine the wavelength of maximum absorbance

10 g/ml . For Docetaxel, the absorbance of these solutions was measured against a standard of distilled water, and the calibration curve was constructed.

4.5 Solubility study of Docetaxel:^[98]

The solubility of saturation Docetaxel solubility tests were conducted using several solvents. Studies on solubility were performed by adding extra Docetaxel to a 25 ml volumetric flask that was saturated with 10 ml of solvent. The mixture was then maintained in a mechanical shaker for three days at 37 °C to aid in solubilisation. To measure the amount of Docetaxel in the supernatant using UV spectroscopy at a certain wavelength, the supernatant was obtained, dilute with methanol up to ten times, and filtered through Whatman filter paper.

5. Drug and Excipients Compatibility Study:

5.1 Fourier Transform Infrared Spectroscopy (FTIR):^[99]

For the compatibility research, a physical combination of the medication and Excipients was used. FTIR spectroscopy was used to conduct a compatibility evaluation. Solid state KBr dispersion media was used to scan samples of pure drugs and Excipients as well as physical mixtures of drugs and Excipients. The scanning range was maintained between 4000 and 400 cm⁻¹.

5.2 Differential Scanning Calorimetry (DSC):^[100]

A differential scanning calorimeter (Mettler Toledo) was used to measure the thermal behaviour of a pure drug, optimised SLN batch at a heating rate of 10°C/min.

Table 3. Composition of Docetaxel loaded solid lipid nanoparticles containing different lipids and surfactants and its entrapment efficiency

Formulation	Solid lipid	% W/V	Surfactant	% W/V	Entrapment Efficiency % ± S.D
F1	GMS	6	Tween 80	1.0	77.62 ± 0.65
F2	GMS	6	Tween 80	1.5	79.16 ± 0.36
F3	GMS	6	Tween 80	2.0	80.32 ± 0.50
F4	GMS	6	Poloxamer 188	1.0	80.86 ± 0.69
F5	GMS	6	Poloxamer 188	1.5	83.03 ± 0.33
F6	GMS	6	Poloxamer 188	2.0	84.69 ± 0.25
F7	GMS	6	Span 20	1.0	71.49 ± 0.78
F8	GMS	6	Span 20	1.5	73.76 ± 0.13
F9	GMS	6	Span 20	2.0	76.45 ± 0.10
F10	GMO	6	Tween 80	1.0	74.32 ± 0.08
F11	GMO	6	Tween 80	1.5	75.52 ± 0.51
F12	GMO	6	Tween 80	2.0	76.66 ± 0.19
F13	GMO	6	Poloxamer 188	1.0	78.54 ± 0.25
F14	GMO	6	Poloxamer 188	1.5	83.54 ± 0.66
F15	GMO	6	Poloxamer 188	2.0	85.64 ± 0.25
F16	GMO	6	Span 20	1.0	73.85 ± 0.31
F17	GMO	6	Span 20	1.5	78.74 ± 0.18
F18	GMO	6	Span 20	2.0	81.43 ± 0.57

Abbreviation: GMS- Glyceryl monostearate, GMO- Glyceryl monooleate

7. Evaluation of Solid Lipid Nanoparticles Loaded with Drug Docetaxel:

7.1 Preformulation Study:

Physicochemical properties of drug.

7.2 Description:

7.4 Melting Point:

The melting point of Docetaxel was found to be 232 °C.

The measurements were carried out in nitrogen atmospheres with a heating range of 30-400 °C.

6. Formulation of Solid lipid Nanoparticles:

6.1 Preparation of Docetaxel loaded Solid Lipid Nanoparticles:

High pressure homogenization and the ultrasonication technique were used to create the Docetaxel-loaded SLN. One part methanol to one part chloroform was used to dissolve the Docetaxel and monoglyceride. A rotary flash evaporator was used to eliminate organic solvents. Heating to 5 °C above the melting point of the lipid melted the buried lipid layer. Tween 80, poloxamer 188, or span 20 stabilisers were dissolved in distilled water to make 30 ml, and the aqueous phase was then heated to the same temperature as the oil phase. The hot aqueous phase was introduced to the oil phase, and a high-pressure homogenization was used for 30 min. at 2500 rpm and 70 °C. The resulting coarse oil in water emulsion was subjected to a 25-minute probe sonication procedure. The heated nano emulsion was eventually allowed to cool to room temperature and was kept refrigerated at 4 °C to produce the Docetaxel-loaded SLN.

In table 3.^[101], the various formulations' compositions are listed.

In all SLN formulation the lipid concentration was kept constant (as 6 % w/v).

The Docetaxel drug is the white powder.

7.3 Solubility:

It is soluble in ethanol, isopropyl alcohol and insoluble in water.

Determination of λ max and Calibration Curve of Docetaxel in m methano

7.5 Wavelength selection:

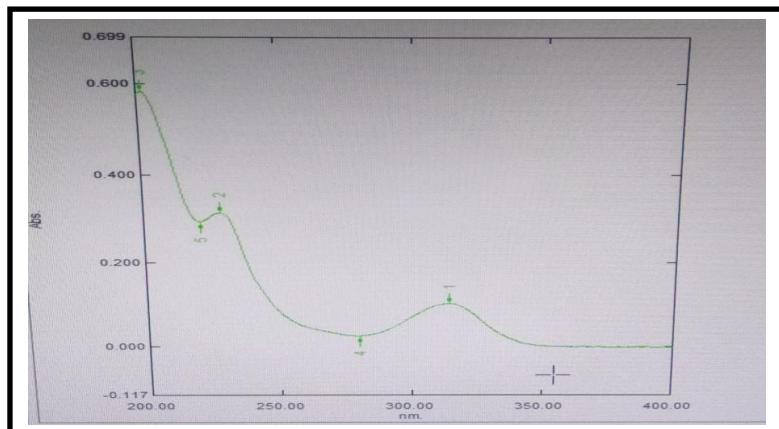


Fig. 5.UV Spectrum of Docetaxel

An absorption maximum was found to be at 230 nm. Hence 230 nm was selected as λ max for further studies.

7.6 Calibration curve:

Table 4. Results for calibration curve

Sr. No.	Concentration ($\mu\text{g}/\text{ml}$)	Absorbance			Mean \pm SD
		I	II	III	
1	2	0.128	0.132	0.131	0.130 ± 0.0017
2	4	0.247	0.251	0.250	0.249 ± 0.0015
3	6	0.373	0.377	0.376	0.375 ± 0.0018
4	8	0.496	0.499	0.501	0.498 ± 0.0022
5	10	0.614	0.618	0.617	0.616 ± 0.0017

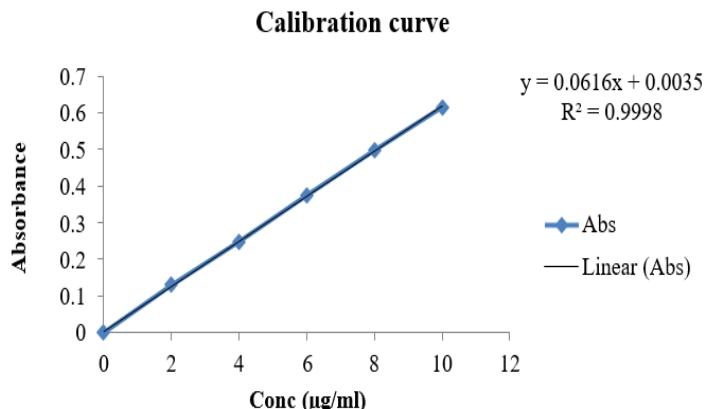


Fig.6. Calibration curve of Docetaxel

Absorbance of various standard concentrations of Docetaxel solutions were read at 230 nm λ max and

calibration curve was plotted to check the linearity.

7.7. Solubility study:

Saturation solubility of Docetaxel with different solvents

Table 5. Saturation solubility of Docetaxel with different solvents

Sr. No.	Solvent	Saturation solubility (mg/ml)	% Drug Saturation Solubility
1	0.1 N HCL	0.5730	76.40 %
2	Acetate Buffer (pH 4.4)	0.1103	44.12 %
3	Phosphate Buffer (pH 6.4)	0.1670	59.71 %
4	Phosphate Buffer (pH 7.2)	0.2840	67.61 %
5	Phosphate Buffer(pH 8.6)	0.1899	49.97 %

6	Water	0.001623	0.676 %
---	-------	----------	---------

7

.8 Compatibility Study:

7.8.1 Fourier Transform Infrared Spectroscopy (FTIR):

The picture depicts the FTIR spectrum of a pure drug, Excipients, and a physical mixing of drug and Excipients. By using FTIR spectroscopy, the potential

interaction between the medicine and Excipients was investigated. The following table displays and interprets the main FTIR peaks of the physical mixture, formulation, and pure drugs Docetaxel, Tween 80, and Poloxamer 188.

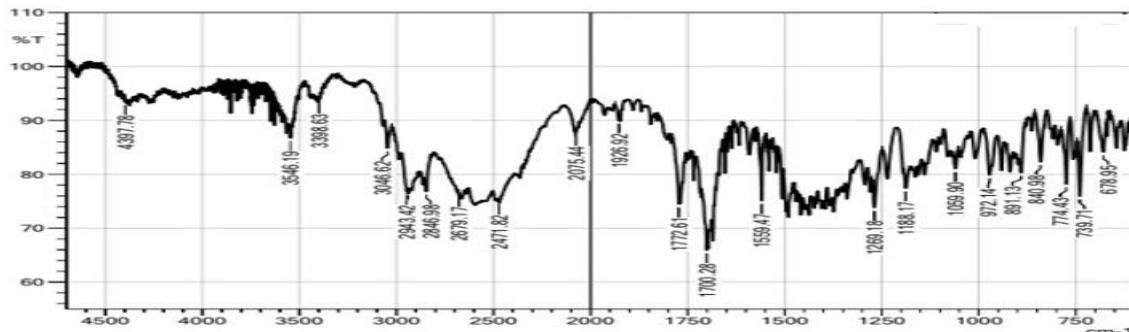


Fig.7. FTIR Spectra of Docetaxel

Table 6. Spectral interpretation of Docetaxel

Functional Group	FTIR Peak (cm-1)	Range FTIR Peak (cm-1)
(-NH) stretching	3398.63	3500-3100
C-N Stretching	1069.90, 1188.17, 1269.18	1350-1000

After interpretation of FT-IR Spectrum of drug, it was concluded that all the characteristic peaks corresponding to the functional group present in the molecular structure

of Docetaxel were found within the reference range and confirming its identity.

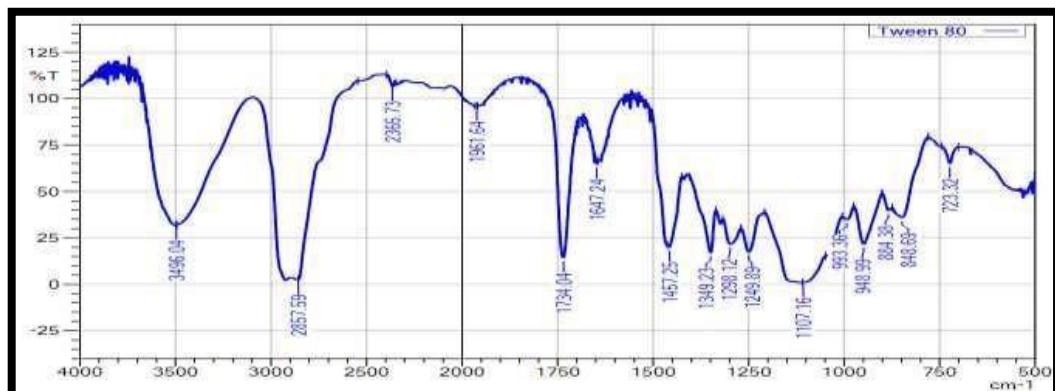
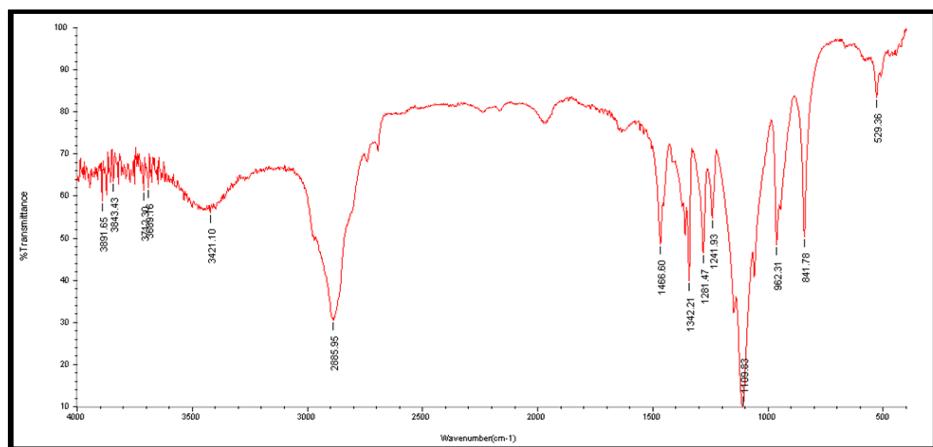



Fig.8. FTIR spectrum of Tween 80

Table 7. Spectral interpretation of Tween 80

Functional Group	FTIR Peak (cm-1)	Range FTIR Peak (cm-1)
C-O stretching	1734.04	1740-1730
C-O stretching	1647.24	1680-1660

O-H stretching	3496.04	3560-3500
C=O stretching	1653.99	1670-1630
C-H stretching	2857.59	2900-2700
C-H deformation	948.09	975-780

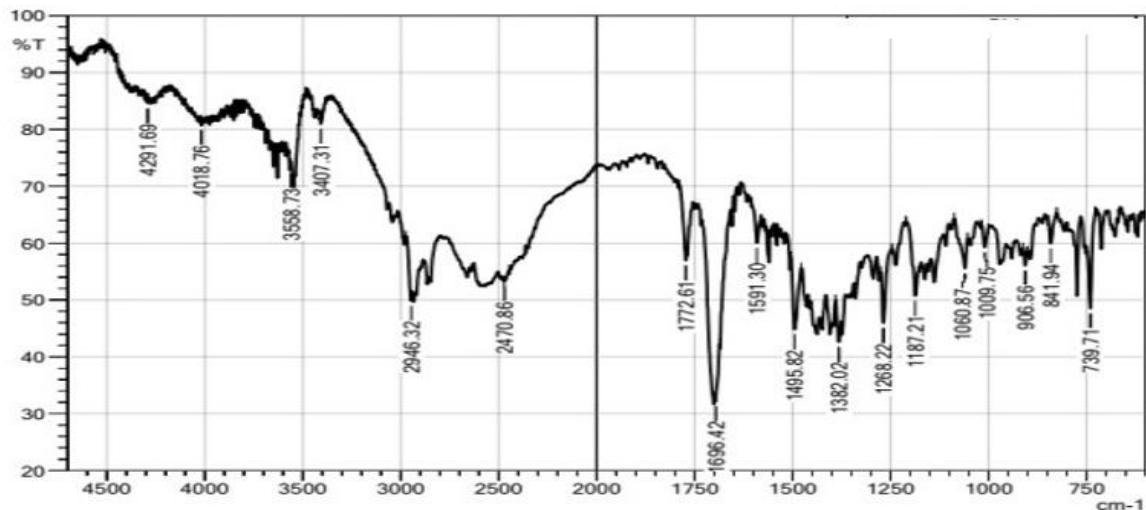

Fig.9. FTIR spectrum of Poloxamer 188

Table 8. Spectral interpretation of Poloxamer 188

Functional Group	FTIR Peak (cm ⁻¹)	Range FTIR Peak (cm ⁻¹)
O-H stretching	3421.10	3550-3200
C-H stretching	2885.95	2972-2850
O-H bending	1342.21	1420-1330
C-O stretching	1109.83	1124-1087

After interpretation of FT-IR Spectrum of polymer, it was concluded that all the characteristic peaks corresponding to the functional group present in

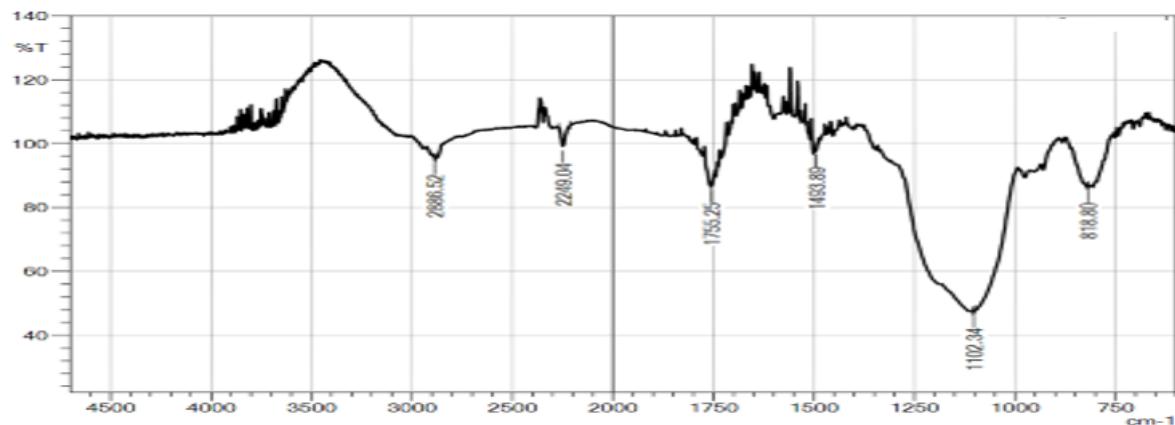

molecular structure of both the polymers were found within the reference range, confirming its identity.

Fig.10. FTIR spectrum of physical mixture of Docetaxel and Excipients

After interpretation of FT-IR Spectrum of Excipients and its physical mixture with drug, it was concluded that all the characteristic peaks corresponding to the functional group present in molecular structure of

Docetaxel were not found intact within the reference range, confirming its reactivity with polymers. This interaction further supports the selection of polymer.

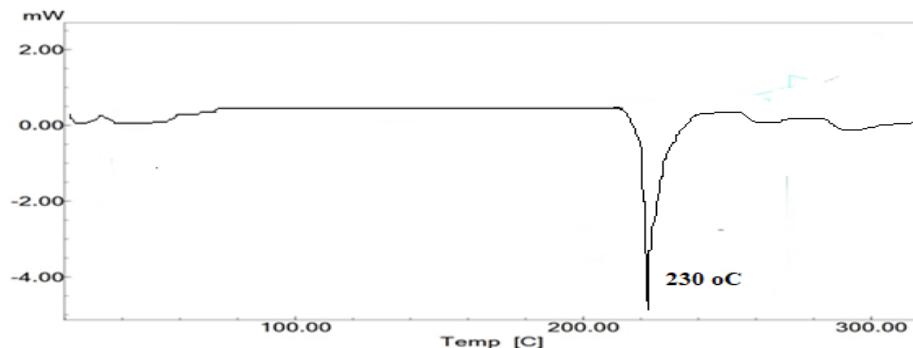


Fig.11. FTIR spectrum of optimized formulation of SLN F15 batch

There was no considerable change in the positions of characteristic absorption bands and bonds of various functional groups present in the drug. This observation clearly suggests that the Docetaxel shows no prominent change in its characteristics even in its physical mixture. The results of FTIR spectra indicated the interaction between drug and Excipients. It showed that Docetaxel was compatible with above Excipients.

7.8.2 Differential Scanning Calorimetry (DSC):

The differential scanning calorimeter (DSC) thermogram study was used to characterize the pure drug and chosen formulation of SLN batch F15. Records of the DSC patterns were made. Each sample was heated in a platinum crucible using a reference of alpha alumina powder at a scanning rate of 10°C/min in a nitrogen environment (150 mL/min). Periodically, the temperature calibrations were carried out with indium serving as the standard.

Fig.12. DSC of pure Docetaxel

Fig.13. DSC of optimized SLN batch F15

Figure reports the DSC thermograms of the pure medication and preparation. The drug's endothermic peak is clearly visible around 230 °C (Fig.), which is

very near to its actual melting point. Furthermore, a clear endothermic peak at 228 °C was visible in the optimized SLN batch F15. Since no such typical pure drug peak

was present, it can be assumed that drug melting behavior had not changed. Because the crystalline state is usually favored, the solid particles present remain in a highly dissolved state. Nevertheless, shows an endothermic peak with a nearly identical initiation temperature to the endothermic peak. Sharp peaks that match to pure Docetaxel melting point indicated that there is no interaction between the medicine and polymers.

7.8.4 Evaluation of SLNs by % Drug content, % Practical yield and Drug loading (%):

Table 9 :% Practical Yield, % Drug Content and % Drug loading

Sr. No.	Formulation Code	% Drug content	% Practical yield	Drug Loading (%)
1.	F1	67.33 %	58.48 %	2.57 %
2.	F2	69.78 %	60.44 %	3.57 %
3.	F3	71.43 %	62.47 %	5.77 %
4	F4	71.89 %	64.38 %	5.98 %
5	F5	72.78 %	67.85 %	6.63 %
6	F6	74.37 %	69.78 %	7.47 %
7	F7	76.48 %	72.47 %	7.89 %
8	F8	77.45 %	73.63 %	8.46 %
9	F9	79.38 %	73.88 %	8.79 %
10	F10	81.46 %	74.75 %	9.03 %
11	F11	81.87 %	74.96 %	9.34 %
12	F12	82.56 %	75.12 %	9.56 %
13	F13	83.02 %	75.23 %	9.87 %
14	F14	83.06 %	75.29 %	10.46 %
15	F15	87.76 %	75.87 %	12.46 %
16	F16	83.91 %	75.36 %	10.96 %
17	F17	84.22 %	75.48 %	11.21 %
18	F18	85.37 %	75.67 %	11.87 %

7.8.5 Evaluation of SLNs by Particle size, zeta potential analysis and Polydispersity index (PDI):

Table 10. Particle size, zeta potential analysis and Polydispersity index (PDI) of formulations (All values expressed are mean \pm SD where n = 3)

Sr. No.	Formulation code	Particle size (nm)	Zeta Potential (mv)	Polydispersity index (PDI)
1.	F1	246.05 \pm 2.26	-25.23 \pm 0.44	0.174 \pm 0.06
2.	F2	258.32 \pm 2.13	-25.43 \pm 0.32	0.179 \pm 0.09
3.	F3	263.57 \pm 0.29	-25.88 \pm 0.74	0.181 \pm 0.01
4	F4	281.23 \pm 1.59	-26.57 \pm 0.44	0.183 \pm 0.03
5	F5	297.03 \pm 1.16	-27.56 \pm 0.11	0.185 \pm 0.07
6	F6	305.32 \pm 2.56	-27.76 \pm 0.55	0.189 \pm 0.02
7	F7	332.06 \pm 0.87	-27.89 \pm 0.78	0.191 \pm 0.03
8	F8	348.12 \pm 4.05	-28.50 \pm 0.22	0.193 \pm 0.08
9	F9	350.29 \pm 2.03	-28.10 \pm 0.12	0.195 \pm 0.04
10	F10	354.12 \pm 1.74	-28.19 \pm 0.22	0.198 \pm 0.05
11	F11	359.04 \pm 0.67	-28.44 \pm 0.87	0.200 \pm 0.08
12	F12	365.32 \pm 3.44	-28.87 \pm 0.24	0.218 \pm 0.06
13	F13	374.09 \pm 0.73	-29.43 \pm 0.29	0.223 \pm 0.09
14	F14	378.14 \pm 1.45	-29.68 \pm 0.21	0.243 \pm 0.01
15	F15	235.66 \pm 4.12	-32.23 \pm 0.45	0.285 \pm 0.13
16	F16	239.53 \pm 2.04	-30.10 \pm 0.33	0.258 \pm 0.03
17	F17	240.23 \pm 1.46	-30.89 \pm 0.37	0.266 \pm 0.04
18	F18	243.11 \pm 3.84	-31.98 \pm 0.64	0.279 \pm 0.01

7.8.3 Entrapment efficiency:

An essential factor in characterizing solid lipid Nanoparticles is entrapment efficiency. The type and concentration of the lipid and surfactant material utilized were a few of the variables that were changed in order to get the best encapsulation efficiency. The table below displays the entrapment effectiveness of each created SLN compound. The SLN dispersions' entrapment effectiveness was discovered to be between 71.49% and 85.64%.

The following assessment of all SLN batches was completed. Particle size, Zeta potential analysis, Practical Yield, Drug Content, Drug Loading, and Polydispersity Index (PDI). The results are all within predetermined ranges. As a result of the observations made above, the F15 batch is regarded as an optimized batch due to its superior performance when compared to other batches.

8. RESULT AND DISCUSSION:

In the current study, Docetaxel was employed as a model pharmaceutical to develop and evaluate solid lipid Nanoparticles for enhancing anticancer drug solubility and permeability. The selected Excipients functioned effectively with Docetaxel. The concentration of Docetaxel in SLNs was measured using a UV visible spectroscopic method. Docetaxel SLNs were manufactured in 18 batches with a range of Excipients, including GMS, GMO, Tween 80, span 20, and poloxamer 188.

The primary goals of developing SLNs were to increase the drug's solubility and permeability, which contribute to low and variable bioavailability. These variables include low water solubility, low permeability, inconsistent and poor absorption, inter- and intra-subject variability, and a high dietary impact.

The physical and chemical parameters of Docetaxel SLN formulations, such as drug content, practical yield, entrapment efficiency, drug loading, particle size, zeta potential, and Polydispersity index, were investigated. The results lead to the selection of an optimal batch. The SLNs were also evaluated for FTIR, DSC, and research. When SLN batches were evaluated, batch F15 outperformed the others. The batch F15 was shown to have higher values for drug content, practical yield, entrapment efficiency, and percent drug release. Compared to the other batches, hence the batch F15 shows greater results in the assessment research.

As a result, the SLNs achieve the desired benefits of increasing the drug's solubility and permeability for parenteral delivery. We concluded that the high pressure homogenization approach creates solid lipid Nanoparticles containing Docetaxel that are the appropriate particle size.

The optimized SLN batch F15 showed the largest cumulative amount of drug penetration per cm² when compared to pure Docetaxel. As a result, medication penetration becomes more effective.

9. References:

1. Limeres MJ., Moreton MA., Bernabeu E., Chiappetta DA., Cuestas ML. Thinking small, doing big: Current success and future trends in drug delivery systems for improving cancer therapy with special focus on liver cancer. *Materials Science and Engineering: C*. 2019;95:328-41.
2. Ud Din F., Aman W., Ullah I., Qureshi OS., Mustapha O., Shafique S., Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected Tumors. *International journal of nanomedicine*. 2017;12:7291-7309.
3. Prasad PV., Shrivastav TG. Nanotechnological contribution to drug delivery system: A reappraisal. *Journal of Biomaterials and Nanobiotechnology*. 2014;5:194-199.
4. De Blaey CJ., Polderman J. Rationales in the design of rectal and vaginal delivery forms of drugs. In *Medicinal Chemistry*. 1980;9:237-266.
5. Feeney OM., Crum MF., McEvoy CL., Treva skis NL, Williams HD., Pouton CW., Charman WN., Bergstrom CA., Porter CJ. 50 years of oral lipid-based formulations: provenance, progress and future perspectives. *Advanced drug delivery reviews*. 2016;101:167-94.
6. Hauser EA. The history of colloid science: In memory of Wolfgang Ostwald. *Journal of chemical education*. 1955;32(1):1-2.
7. Siepmann J., Siepmann F. Microparticles used as drug delivery systems. In *Smart colloidal materials* 2006:15-21.
8. Kumar N., Kumar R. *Nanotechnology and Nanomaterials in the Treatment of Life-threatening Diseases*. William Andrew; 2013.
9. H Muller R., Shegokar R., M Keck C. 20 years of lipid nanoparticles (SLN & NLC): present state of development & industrial applications. *Current drug discovery technologies*. 2011;8(3):207-27.
10. Wissing SA., Kayser O., Müller RH. Solid lipid nanoparticles for parenteral drug delivery. *Advanced drug delivery reviews*. 2004;56(9):1257-72.
11. Gordillo-Galeano A., Mora-Huertas CE. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. *European Journal of Pharmaceutics and Biopharmaceutics*. 2018;133:285-308.
12. Marengo E., Cavalli R., Caputo O., Rodriguez L., Gasco MR. Scale-up of the preparation process of solid lipid nanospheres. Part I. *International journal of pharmaceutics*. 2000;205(1- 2):3-13.
13. Gasket-Moritz M., Moritz M. Solid lipid nanoparticles as attractive drug vehicles: composition, properties and therapeutic strategies. *Materials Science and Engineering: C*. 2016;68:982-94.
14. Doktorovova S., Shegokar R., Souto EB. Role of excipients in formulation development and biocompatibility of lipid nanoparticles (SLNs/NLCs). In *Nanostructures for Novel Therapy*. 2017:811-843
15. Westesen K., Bunjes H. Do nanoparticles prepared from lipids solid at room temperature always possess a solid lipid matrix? *International journal of pharmaceutics*. 1995;115(1):129- 31.
16. Arana L., Salado C., Vega S., Aizpurua-Olaizola O., de la Arada I., Suarez T., Usobiaga A., Arrondo JL., Alonso A., Goni FM., Alkorta I. Solid lipid nanoparticles for delivery of *Calendula officinalis* extract. *Colloids and Surfaces B: Biointerfaces*. 2015;135:18-26.

24. Tongcher O., Sigel R., Landfester K. Liquid crystal nanoparticles prepared as miniemulsions. *Langmuir*. 2006; 22(10):4504-11.

25. Murgia S., Falchi AM., Mano M., Lampis S., Angius R., Carnerup AM., Schmidt J., Diaz G., Giacca M., Talmon Y., Monduzzi M. Nanoparticles from lipid-based liquid crystals: emulsifier influence on morphology and cytotoxicity. *The Journal of Physical Chemistry B*. 2010;114(10):3518-25.

26. Lee DR., Park JS., Bae IH., Lee Y., Kim BM. Liquid crystal nanoparticle formulation as an oral drug delivery system for liver-specific distribution. *International journal of nanomedicine*. 2016;11:853-871.

27. Angelova A., Garamus VM., Angelov B., Tian Z., Li Y., Zou A. Advances in structural design of lipid-based nanoparticle carriers for delivery of macromolecular drugs, phytochemicals and anti-tumor agents. *Advances in colloid and interface science*. 2017;249:331-45.

28. Sathali AH., Ekambaran P., Priyanka K. Solid lipid nanoparticles: a review. *Scientific Reviews and Chemical. Communication*. 2012;2(1):80-102.

29. Reddy AP., Parthiban S., Vikneswari A., Senthilkumar GP. A modern review on solid lipid nanoparticles as novel controlled drug delivery system. *Int. J. Res. Pharm. Nano Sci.* 2014;3:313-25.

30. Lockman P.R. Brain uptake of thiamine-coated nanoparticles. *Journal of controlled release*. 2003;93(3):271-282.

31. Mehnert W. and K. Mader. Solid lipid nanoparticles: Production, characterization and applications. *Advanced drug delivery reviews*. 2001;47(2-3):165-196.

32. Gohla S. and A. Dingler. Scaling up feasibility of the production of solid lipid nanoparticles (SLN). *Die Pharmazie*. 2001;56(1):61.

33. Manjunath K., Reddy JS., Venkateswarlu V. Solid lipid nanoparticles as drug delivery systems. *Methods Find Exp Clin Pharmacol*. 2005;27(2):127-44.

34. Ebrahimi HA., Javadzadeh Y., Hamidi M., Jalali MB. Repaglinide-loaded solid lipid nanoparticles: effect of using different surfactants/stabilizers on physicochemical properties of nanoparticles. *DARU Journal of Pharmaceutical Sciences*. 2015;23(1):1-1.

35. Patwekar S., Gattani S., Giri R., Bade A., Sangewar B., Raut V. Review on nanoparticles used in cosmetics and dermal products. *World J. Pharm. Pharm. Sci.* 2014;3:1407-21.

36. Ganesan P., Narayanasamy D. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies to produce solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. *Sustainable Chemistry and Pharmacy*. 2017;6:37-56.

37. Ebrahimi HA., Javadzadeh Y., Hamidi M., Jalali MB. Repaglinide-loaded solid lipid nanoparticles: effect of using different surfactants/stabilizers on physicochemical properties of nanoparticles. *DARU Journal of Pharmaceutical Sciences*. 2015;23(1):1-1.

38. Byrappa K., Ohara S., Adschiiri T. Nanoparticles synthesis using supercritical fluid technology—towards biomedical applications. *Advanced drug delivery reviews*. 2008;60(3):299-327.

39. Shah R., Eldridge D., Palombo E., Harding I. Lipid nanoparticles: Production, characterization and stability. New York, NY, USA: Springer International Publishing; 2015.

40. Pooja D., Tunki L., Kulhari H., Reddy BB., Sistla R. Optimization of solid lipid nanoparticles prepared by a single emulsification-solvent evaporation method. *Data in brief*. 2016;6:15-9.

41. Heurtault B., Saulnier P., Benoit JP., Proust JE., Pech B., Richard J., inventors; Universite d'Angers, Ethypharm, assignee. Lipid nanocapsules, preparation process and use as medicine. United States patent US 8,057,823. 2011 Nov 15.

42. Jose J., Netto G. Role of solid lipid nanoparticles as photoprotective agents in cosmetics.

43. Journal of cosmetic dermatology. 2019;18(1):315-21.

44. Pardeshi C., Rajput P., Belgamwar V., Tekade A., Patil G., Chaudhary K., Sonje A. Solid lipid based nanocarriers: an overview. *Acta Pharmaceutica*. 2012;62(4):433-72.

45. Uner M., Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. *International journal of nanomedicine*. 2007;2(3):289-300.

46. Esposito E., Pecorelli A., Sguizzato M., Drechsler M., Mariani P., Carducci F., Cervelli F., Nastruzzi C., Cortesi R., Valacchi G. Production and characterization of nanoparticle based hyaluronate gel containing retinyl palmitate for wound healing. *Current drug delivery*. 2018;15(8):1172-82.

47. Venkateswarlu V., Manjunath K. Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. *Journal of controlled release*. 2004;95(3):627-38.

48. Rehman M., Ihsan A., Madni A., Bajwa SZ., Shi D., Webster TJ., Khan WS. Solid lipid nanoparticles for Thermoresponsive targeting: evidence from spectrophotometry, electrochemical, and cytotoxicity studies. *International journal of nanomedicine*. 2017;12:8325-8336.

49. Chen HH., Huang WC., Chiang WH., Liu TI., Shen MY., Hsu YH., Lin SC., Chiu HC. pH-Responsive therapeutic solid lipid nanoparticles for reducing P-glycoprotein-mediated drug efflux of multidrug resistant cancer cells. *International journal of nanomedicine*. 2015;10:5035-5048.

50. Moon JH., Moxley Jr JW., Zhang P., Cui H. Nanoparticle approaches to combating drug resistance. *Future medicinal chemistry*. 2015;7(12):1503-10.

58. Sun T., Zhang YS., Pang B., Hyun DC., Yang M., Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. *Angewandte Chemie International Edition*. 2014;53(46):12320-64.

59. Bertrand N., Wu J., Xu X., Kamaly N., Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. *Advanced drug delivery reviews*. 2014;66:2-5.

60. Natfji AA., Ravishankar D., Osborn HM, Greco F. Parameters affecting the enhanced permeability and retention effect: the need for patient selection. *Journal of pharmaceutical sciences*. 2017;106(11):3179-87.

61. Kou L., Bhutia YD., Yao Q., He Z., Sun J., Ganapathy V. Transporter-guided delivery of nanoparticles to improve drug permeation across cellular barriers and drug exposure to selective cell types. *Frontiers in pharmacology*. 2018;9:1-16.

62. Wang F., Li L., Liu B., Chen Z., Li C. Hyaluronic acid decorated Pluronic P85 solid lipid nanoparticles as a potential carrier to overcome multidrug resistance in cervical and breast cancer. *Biomedicine & Pharmacotherapy*. 2017;86:595-604.

63. Shi S., Zhou M., Li X., Hu M., Li C., Li M., Sheng F., Li Z., Wu G., Luo M., Cui H. Synergistic active targeting of dually integrin $\alpha\beta3/CD44$ -targeted nanoparticles to B16F10 Tumors located at different sites of mouse bodies. *Journal of Controlled Release*. 2016;235:1-13.

64. Jain A., Kesharwani P., Garg NK., Jain A., Jain SA., Jain AK., Nirbhavane P., Ghanghoria R., Tyagi RK., Katare OP. Galactose engineered solid lipid nanoparticles for targeted delivery of doxorubicin. *Colloids and Surfaces B: Biointerfaces*. 2015;134:47-58.

65. Liu J., Meng T., Yuan M., Wen L., Cheng B., Liu N., Huang X., Hong Y., Yuan H., Hu F. MicroRNA-200c delivered by solid lipid nanoparticles enhances the effect of paclitaxel on breast cancer stem cell. *International journal of nanomedicine*. 2016;11:6713-6725.

66. Wang J., Seebacher N., Shi H., Kan Q., Duan Z. Novel strategies to prevent the development of multidrug resistance (MDR) in cancer. *Oncotarget*. 2017;8(48):84559-84571.

67. Ma L., Yang D., Li Z., Zhang X., Pu L. Co-delivery of paclitaxel and tanespimycin in lipid nanoparticles enhanced anti-gastric-tumor effect in vitro and in vivo. *Artificial cells, nanomedicine, and biotechnology*. 2018;46(2):904-11.

68. Liu B., Han L., Liu J., Han S., Chen Z., Jiang L. Co-delivery of paclitaxel and TOS-cisplatin via TAT-targeted solid lipid nanoparticles with synergistic antitumor activity against cervical cancer. *International journal of nanomedicine*. 2017;12:955-968.

69. Cavalli R., Caputo O., Carlotti ME., Trotta M., Scarneccia C., Gasco MR. Sterilization and freeze-drying of drug-free and drug-loaded solid lipid nanoparticles. *International journal of pharmaceutics*. 1997;148(1):47-54.

70. Schwarz C., Freitas C., Mehner W., Müller RH. Sterilization and physical stability of drug-free and etomidate-loaded solid lipid nanoparticles. In *Proceedings of International Symposium on Controlled Release of Bioactive Materials*. 1995;22:766-767.

71. Jenning V., Schafer-Korting M., Gohla S. Vitamin A-loaded solid lipid nanoparticles for topical use: drug release properties. *Journal of controlled release*. 2000;66(2-3):115-26.

72. Ozeki T., Beppu S., Mizoe T., Takashima Y., Yuasa H., Okada H. Preparation of two-drug composite microparticles to improve the dissolution of insoluble drug in water for use with a 4-fluid nozzle spray drier. *Journal of controlled release*. 2005;107(3):387-94.

73. Negi JS., Chattopadhyay P., Sharma AK., Ram V. Development of solid lipid nanoparticles (SLNs) of lopinavir using hot self-nano-emulsification (SNE) technique. *European Journal of Pharmaceutical Sciences*. 2013;48(1-2):231-9.

74. Yang SC., Lu LF., Cai Y., Zhu JB., Liang BW., Yang CZ. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. *Journal of controlled release*. 1999;59(3):299-307.

75. Lai JY. Biocompatibility of chemically cross-linked gelatin hydrogels for ophthalmic use. *Journal of Materials Science: Materials in Medicine*. 2010;21(6):1899-911.

76. Khurana LK., Singh R., Singh H., Sharma M. Systematic development and optimization of an in-situ gelling system for moxifloxacin ocular nanosuspension using high-pressure homogenization with an improved encapsulation efficiency. *Current pharmaceutical design*. 2018;24(13):1434-45.

77. Hare JI., Lammers T., Ashford MB., Puri S., Storm G., Barry ST. Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. *Advanced drug delivery reviews*. 2017;108:25-38.

78. von Roemeling C., Jiang W., Chan CK., Weissman IL., Kim BY. Breaking down the barriers to precision cancer nanomedicine. *Trends in biotechnology*. 2017;35(2):159-71.

79. Jaffee EM., Van Dang C., Agus DB., Alexander BM., Anderson KC., Ashworth A., Barker AD., Bastani R., Bhatia S., Bluestone JA., Brawley O. Future cancer research priorities in the USA: a Lancet Oncology Commission. *The Lancet Oncology*. 2017;18(11):e653-706.

80. Ravi PR., Vats R., Dalal V., Murthy AN. A hybrid design to optimize preparation of lopinavir loaded solid lipid nanoparticles and comparative pharmacokinetic evaluation with marketed lopinavir/ritonavir coformulation. *Journal of Pharmacy and Pharmacology*. 2014;66(7):912- 26.

91. Christaki E., Marcou M., Tofarides A. Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence. *Journal of molecular evolution*. 2020;88(1):26-40.
92. Aldayel AM., O'Mary HL., Valdes SA., Li X., Thakkar SG., Mustafa BE., Cui Z. Lipid nanoparticles with minimum burst release of TNF- α siRNA show strong activity against rheumatoid arthritis unresponsive to methotrexate. *Journal of Controlled Release*. 2018;283:280-9.
93. Abbas H., Refai H., El Sayed N. Superparamagnetic iron oxide-loaded lipid nanocarriers incorporated in thermosensitive in situ gel for magnetic brain targeting of clonazepam. *Journal of pharmaceutical sciences*. 2018;107(8):2119-27.
94. Lakkadwala S., Nguyen S., Lawrence J., Nauli SM., Nesamony J. Physico-chemical characterisation, cytotoxic activity, and biocompatibility studies of tamoxifen-loaded solid lipid nanoparticles prepared via a temperature-modulated solidification method. *Journal of microencapsulation*. 2014;31(6):590-9.
95. Vicente-Pascual M., Albano A., Solinis MÁ., Serpe L., Rodríguez-Gascon A., Foglietta F.,
96. Muntoni E., Torrecilla J., Pozo-Rodriguez AD., Battaglia L. Gene delivery in the cornea: In vitro & ex vivo evaluation of solid lipid nanoparticle-based vectors. *Nanomedicine*. 2018;13(15):1847-54.
97. Kaur A., Goindi S., Katare OP. Formulation, characterisation and in vivo evaluation of lipid-based nanocarrier for topical delivery of diflunisal. *Journal of microencapsulation*. 2016;33(5):475-86.
98. Gonçalez ML., Rigon RB., Pereira-da-Silva MA., Chorilli M. Curcumin-loaded cationic solid lipid nanoparticles as a potential platform for the treatment of skin disorders. *Die Pharmazie An International Journal of Pharmaceutical Sciences*. 2017;72(12):721-7.
99. Stelzner JJ., Behrens M., Behrens SE., Mader K. Squalene containing solid lipid nanoparticles, a promising adjuvant system for yeast vaccines. *Vaccine*. 2018;36(17):2314-20.
100. Castellani S., Trapani A., Spagnolletta A., Di Toma L., Magrone T., Di Gioia S., Mandracchia D., Trapani G., Jirillo E., Conese M. Nanoparticle delivery of grape seed-derived proanthocyanin to airway epithelial cells dampens oxidative stress and inflammation. *Journal of translational medicine*. 2018;16(1):1-5.
101. Zambrano-Zaragoza ML., González-Reza R., Mendoza-Muñoz N., Miranda-Linares V., Bernal-Couth TF., Mendoza-Elvira S., Quintanar-Guerrero D. Nanosystems in edible coatings: A novel strategy for food preservation. *International journal of molecular sciences*. 2018;19(3):705.
102. A Jemal, R Siegel, E Ward. *Cancer statistics 2007 CA. Cancer J Clin.* 2007 (57) 43- 66.
103. R Duncan. The dawning era of polymer therapeutics. *Natl Rev Drug Discov.* 2003 (56)1649- 1659.
104. M Yokoyama, T Okano, Y Sakurai. Toxicity and antitumor activity against solid Tumors of micelle-forming polymeric anticancer drug and its extremely long circulation in blood. *Cancer Res.* 1991 (51) 329-336.
105. F Yuan, M Dellian, D Fukumura. Vascular permeability in a tumor xenograft: molecular size dependence and cut-off size. *Cancer Res.* 1995 (55) 4607-4612.
106. SK Hobbs., WL Monsky, F Yuan. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. *Proc Natl Acad Sci. USA*.1998 (95) 4607-4612.
107. H Hashizume, P Baluk, S Morikawa. Opening between defective endothelial cells explain tumor vessel leakiness. *Am J Pathol.* 2000; (27) 119-126.
108. L Brannon-Peppas, JO Blanchette. Nanoparticle and targeted systems for cancer therapy. *Adv Drug Deliv Rev.* 2004 (56) 1649—1659.
109. EI-Gizawy SA., El-Maghraby GM., Hedaya AA. Formulation of acyclovir-loaded solid lipid nanoparticles: design, optimization, and in-vitro characterization. *Pharm Dev Tech.* 2019; 24(10):1287-1298.
110. Pandya NT., Jani P., Vanza J., Tandel H. Solid nanoparticles as an efficient drug delivery system of olmesartanmedoxomil for the treatment of hypertension. *Colloids surf B Biointerfaces*. 2018; 165:37-44.
111. Bhalekar M., Upadhyaya P., Madgulkar A. Formulation and characterization of solid lipid
112. nanoparticles for an anti-retroviral drug darunavir. *Appl Nanosci.* 2017:47-57.
113. Vaculikova E., Cernikova A., Placha D., Pisarcik M., Dedkova K. Cimetidine Nanoparticles for Permeability Enhancement. *J Nanosci Nanotech.* 2016; 16:7840–7843.
114. Dangre PV., Gilhotra RM., Dhole SN. Formulation and development of solid self-micro emulsifying drug delivery system (S-SMEDDS) containing chlorthalidone for improvement of dissolution. *J Pharma Investigation.* 2016; 46:633–644.
115. Mokale V., Khatumaria B., Verma U., Shimpi N., Naik J., Mishra S. Formulation and development of nanoparticles for quick and complete release of hydrochlorothiazide by Nanonization technique. *Micro Nanosyst.* 2016; 6:109–117.
116. Chourasiya V., Bore S., Pandey A. Hydrochlorothiazide containing PLGA nanoparticles: Design, characterization, in-vitro drug release and release kinetic study. *Polym Sci Ser B.* 2015; 57:645–653.
117. Vaculikova E., Placha D., Pisarcik, M., Peikertova, P., Dedkova, K., Devinsky F., Jampilek J. Preparation of risedronate nanoparticles by solvent evaporation technique. *Molecules.* 2014; 19:17848–17861.
118. Kushwaha AK., Vuddanda PR., Karunanidhi P., Singh SK., Singh S. Development and Evaluation of Solid Lipid Nanoparticles of Raloxifene Hydrochloride for Enhanced Bioavailability. *BioMed Research International.* 2013:1-9.

119. Shah M., Agrawal Y. Ciprofloxacin hydrochloride-loaded glyceryl monostearate nanoparticle: factorial design of Lutrol F68 and Phospholipon 90G. *J Microencapsulation*. 2012; 29(4):331– 343.

120. Ekambaran P., Sathali A. A. H. Formulation and evaluation of solid lipid nanoparticles of ramipril. *J Young Pharm*. 2011; 3:216–220.

121. Urban-Morlan Z., Ganem-Rondero A., Meliora-Contreras LM., Escobar-Chávez JJ., Nava Arzaluz MG., Quintanar-Guerrero D. Preparation and characterization of solid lipid nanoparticles containing cyclosporine by the emulsification-diffusion method. *Int J Nanomedicine*. 2010; 5:611–620.

122. Rao RG., Kota RK., Setty CM., Rao PK. Formulation and evaluation of fast dissolving chlorthalidone tablets. *Int J Pharm Sci*. 2009; 1:79– 87.

123. Lachman L., Liberman HA. *Theory and Practice of Industrial Pharmacy*. 3rd edition. Mumbai: Varghese Publishing House. 1990; 171-197, 314- 324, 430-456.

124. Pawar S., and Tamboli A. Development and validation of UV spectrophotometric estimation of hydrochlorothiazide in bulk and tablet dosage form using area under curve method. *J Bio Innov*. 2017; 6(6):945-951.

125. Sarkar B. Hardener S. Microemulsion drug delivery system: for oral bioavailability enhancement of glipizide. *J. Adv. Pharm. Educ. Res*. 2011; 1: 195-200.

126. Furniss BS., Hannaford AJ., Smith PWG., Tatchell AR. *Vogel's textbook of practical organic chemistry*. 5th edition. London: Pearson education. 2008; 1412-1422.

127. Mohammadi-Samani S., Salehi H., Entezar-Almahdi E., Masjedi M. Preparation and characterization of sumatriptan loaded solid lipid nanoparticles for transdermal delivery. *Journal of Drug Delivery Science and Technology*. 2020; 57:101719.

128. Luo Y., Chen D., Ren L., Zhao X., Qin J. Solid lipid nanoparticles for enhancing vincristines oral bioavailability. *J Control Release*. 2006; 114: 53-9.

129. Rao M., Reddy RB., Kumar RP. Formulation Development and Evaluation of Diclofenac Sodium Microemulsion. *indoamerican journal of pharmaceutical sciences*. 2015 Dec 1;2(12):1673- 88.

130. Shazly GA. Ciprofloxacin controlled-solid lipid nanoparticles: characterization, in vitro release, and antibacterial activity assessment. *BioMed research international*. 2017 ;2017:1-9.

132. Pandit J., Sultana Y., Aqil M. Chitosan-coated PLGA nanoparticles of bevacizumab as novel drug delivery to target retina: optimization, characterization, and in vitro toxicity evaluation. *Artificial cells, nanomedicine, and biotechnology*. 2017; 45(7):1397-407.

133. Imam SS., Bukhari SN., Ahmad J., Ali A. Formulation and optimization of levofloxacin loaded chitosan nanoparticle for ocular delivery: In-vitro characterization, ocular tolerance and antibacterial activity. *International journal of biological macromolecules*. 2018; 108:650- 9.

134. Fathalla ZM., Khaled KA., Hussein AK., Alany RG., Vangala A. Formulation and corneal permeation of ketorolac tromethamine-loaded chitosan nanoparticles. *Drug development and industrial pharmacy*. 2016;42(4):514-24.

135. Badawi AA., El-Nabarawi MA., El-Setouhy DA., Asmit SA. Formulation and stability testing of itraconazole crystalline nanoparticles. *AapsPharmscitech*. 2011; 12(3):811-20.

137. Nekkanti V., Pillai R., Venkateshwarlu V., Harisudhan T. Development and characterization of solid oral dosage form incorporating candesartan nanoparticles. *Pharmaceutical development and technology*. 2009; 4(3):290-8.

138. Aboud HM., Ali AA., El Menshawe SF., Abd Elbary A. Development, optimization, and evaluation of carvedilol-loaded solid lipid nanoparticles for intranasal drug delivery. *AAPS pharmscitech*. 2016; 17(6):1353-65.

139. Hu F.Q., S.P. Jiang, Y.Z. Du and H. Yuan. Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system. *Colloids and Surf. B: Biointerface*. 2005; 45: 167-173.